ICA-LightGBM Algorithm for Predicting Compressive Strength of Geo-Polymer Concrete

The main goal of the present study is to investigate the capability of hybridizing the imperialist competitive algorithm (ICA) with an intelligent, robust, and data-driven technique named the light gradient boosting machine (LightGBM) to estimate the compressive strength of geo-polymer concrete (CSG...

Full description

Bibliographic Details
Main Authors: Qiang Wang, Jiali Qi, Shahab Hosseini, Haleh Rasekh, Jiandong Huang
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/13/9/2278
Description
Summary:The main goal of the present study is to investigate the capability of hybridizing the imperialist competitive algorithm (ICA) with an intelligent, robust, and data-driven technique named the light gradient boosting machine (LightGBM) to estimate the compressive strength of geo-polymer concrete (CSGCo). The hyper-parameters of the LightGBM algorithm have been optimized based on ICA and its accuracy improved. The obtained results from the proposed hybrid ICA-LightGBM are compared with the traditional LightGBM model as well as four different topologies of artificial neural networks (ANN) comprising a multi-layer perceptron neural network (MLP), radial basis function (RBF), generalized feed-forward neural network (GFFNN), and Bayesian regularized neural network (BRNN). The results of these models were compared based on three evaluation indices of <i>R</i><sup>2</sup>, RMSE, and VAF for providing an objective evaluation of the performance and capability of the predictive models. Concerning the outcomes, the ICA-LightGBM with the <i>R</i><sup>2</sup> of (0.9871 and 0.9805), RMSE of (0.4703 and 1.3137), and VAF of (98.5773 and 98.0397) for training and testing phases, respectively, was a superior predictor to estimate the CSGCo compared to the LightGBM with the <i>R</i><sup>2</sup> of (0.9488 and 0.9478), RMSE of (0.9532 and 2.1631), and VAF of (94.3613 and 94.5173); the MLP with the <i>R</i><sup>2</sup> of (0.9067 and 0.8959), RMSE of (1.3093 and 3.3648), and VAF of (88.9888 and 84.9125); the RBF with the <i>R</i><sup>2</sup> of (0.8694 and 0.8055), RMSE of (1.4703 and 5.0309), and VAF of (86.3122 and 66.1888); the BRNN with the <i>R</i><sup>2</sup> of (0.9212 and 0.9107), RMSE of (1.1510 and 2.6569), and VAF of (91.4168 and 90.5854); and the GFFNN with the <i>R</i><sup>2</sup> of (0.9144 and 0.8925), RMSE of (1.1525 and 2.9415), and VAF of (91.4092 and 88.9088). Hence, the proposed ICA-LightGBM algorithm can be efficiently used in anticipating the CSGCo.
ISSN:2075-5309