Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition

We prove that if the <i>f</i>-sectional curvature at any point of a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mi>s</mi> <mo>)...

Full description

Bibliographic Details
Main Authors: Alfonso Carriazo, Luis M. Fernández, Eugenia Loiudice
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/6/891
_version_ 1797566362296516608
author Alfonso Carriazo
Luis M. Fernández
Eugenia Loiudice
author_facet Alfonso Carriazo
Luis M. Fernández
Eugenia Loiudice
author_sort Alfonso Carriazo
collection DOAJ
description We prove that if the <i>f</i>-sectional curvature at any point of a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-dimensional metric <i>f</i>-contact manifold satisfying the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>,</mo> <mi>μ</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> nullity condition with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> is independent of the <i>f</i>-section at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric <i>f</i>-contact manifold satisfying the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>,</mo> <mi>μ</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> nullity condition is of constant <i>f</i>-sectional curvature if and only if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mi>κ</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and we give an explicit expression for the curvature tensor field in such a case. Finally, we present some examples.
first_indexed 2024-03-10T19:25:53Z
format Article
id doaj.art-5e192fb3fcd74d3ca67e6f6334a08b38
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T19:25:53Z
publishDate 2020-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-5e192fb3fcd74d3ca67e6f6334a08b382023-11-20T02:33:55ZengMDPI AGMathematics2227-73902020-06-018689110.3390/math8060891Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity ConditionAlfonso Carriazo0Luis M. Fernández1Eugenia Loiudice2Departamento de Geometría y Topología, c/Tarfia s/n, Universidad de Sevilla, 41012 Sevilla, SpainDepartamento de Geometría y Topología, c/Tarfia s/n, Universidad de Sevilla, 41012 Sevilla, SpainFachbereich Mathematik und Informatik, Philipps Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, GermanyWe prove that if the <i>f</i>-sectional curvature at any point of a <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>-dimensional metric <i>f</i>-contact manifold satisfying the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>,</mo> <mi>μ</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> nullity condition with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> is independent of the <i>f</i>-section at the point, then it is constant on the manifold. Moreover, we also prove that a non-normal metric <i>f</i>-contact manifold satisfying the <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>κ</mi> <mo>,</mo> <mi>μ</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> nullity condition is of constant <i>f</i>-sectional curvature if and only if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mi>κ</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and we give an explicit expression for the curvature tensor field in such a case. Finally, we present some examples.https://www.mdpi.com/2227-7390/8/6/891metric <i>f</i>-contact manifold<i>f</i>-(<i>κ</i>,<i>μ</i>) manifold<i>f</i>-(<i>κ</i>,<i>μ</i>)-space form
spellingShingle Alfonso Carriazo
Luis M. Fernández
Eugenia Loiudice
Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition
Mathematics
metric <i>f</i>-contact manifold
<i>f</i>-(<i>κ</i>,<i>μ</i>) manifold
<i>f</i>-(<i>κ</i>,<i>μ</i>)-space form
title Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition
title_full Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition
title_fullStr Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition
title_full_unstemmed Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition
title_short Metric <i>f</i>-Contact Manifolds Satisfying the (<i>κ</i>, <i>μ</i>)-Nullity Condition
title_sort metric i f i contact manifolds satisfying the i κ i i μ i nullity condition
topic metric <i>f</i>-contact manifold
<i>f</i>-(<i>κ</i>,<i>μ</i>) manifold
<i>f</i>-(<i>κ</i>,<i>μ</i>)-space form
url https://www.mdpi.com/2227-7390/8/6/891
work_keys_str_mv AT alfonsocarriazo metricificontactmanifoldssatisfyingtheikiiminullitycondition
AT luismfernandez metricificontactmanifoldssatisfyingtheikiiminullitycondition
AT eugenialoiudice metricificontactmanifoldssatisfyingtheikiiminullitycondition