Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases

Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features fro...

Full description

Bibliographic Details
Main Authors: Damien J. McHugh, Nuria Porta, Ross A. Little, Susan Cheung, Yvonne Watson, Geoff J. M. Parker, Gordon C. Jayson, James P. B. O’Connor
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/13/2/240
_version_ 1797413387937775616
author Damien J. McHugh
Nuria Porta
Ross A. Little
Susan Cheung
Yvonne Watson
Geoff J. M. Parker
Gordon C. Jayson
James P. B. O’Connor
author_facet Damien J. McHugh
Nuria Porta
Ross A. Little
Susan Cheung
Yvonne Watson
Geoff J. M. Parker
Gordon C. Jayson
James P. B. O’Connor
author_sort Damien J. McHugh
collection DOAJ
description Imaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>- and T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-weighted images, pre-contrast quantitative T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> maps (qT<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>), and contrast-enhanced T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>-weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box–Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from <inline-formula><math display="inline"><semantics><mrow><mn>0.30</mn></mrow></semantics></math></inline-formula> to <inline-formula><math display="inline"><semantics><mrow><mn>0.99</mn></mrow></semantics></math></inline-formula>, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>- and T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-weighted images, and decrease ICCs for qT<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context.
first_indexed 2024-03-09T05:17:09Z
format Article
id doaj.art-5e453909953a40aeb946649f29ab1043
institution Directory Open Access Journal
issn 2072-6694
language English
last_indexed 2024-03-09T05:17:09Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Cancers
spelling doaj.art-5e453909953a40aeb946649f29ab10432023-12-03T12:43:53ZengMDPI AGCancers2072-66942021-01-0113224010.3390/cancers13020240Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver MetastasesDamien J. McHugh0Nuria Porta1Ross A. Little2Susan Cheung3Yvonne Watson4Geoff J. M. Parker5Gordon C. Jayson6James P. B. O’Connor7Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UKClinical Trials and Statistics Unit, Institute of Cancer Research, London SW3 6JB, UKDivision of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UKDivision of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UKDivision of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UKCentre for Medical Image Computing, University College London, London WC1V 6LJ, UKDivision of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UKDivision of Cancer Sciences, The University of Manchester, Manchester M13 9PL, UKImaging biomarkers require technical, biological, and clinical validation to be translated into robust tools in research or clinical settings. This study contributes to the technical validation of radiomic features from magnetic resonance imaging (MRI) by evaluating the repeatability of features from four MR sequences: pre-contrast T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>- and T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-weighted images, pre-contrast quantitative T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> maps (qT<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>), and contrast-enhanced T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>-weighted images. Fifty-one patients with colorectal cancer liver metastases were scanned twice, up to 7 days apart. Repeatability was quantified using the intraclass correlation coefficient (ICC) and repeatability coefficient (RC), and the impact of non-Gaussian feature distributions and image normalisation was evaluated. Most radiomic features had non-Gaussian distributions, but Box–Cox transformations enabled ICCs and RCs to be calculated appropriately for an average of 97% of features across sequences. ICCs ranged from <inline-formula><math display="inline"><semantics><mrow><mn>0.30</mn></mrow></semantics></math></inline-formula> to <inline-formula><math display="inline"><semantics><mrow><mn>0.99</mn></mrow></semantics></math></inline-formula>, with volume and other shape features tending to be most repeatable; volume ICC > 0.98 for all sequences. 19% of features from non-normalised images exhibited significantly different ICCs in pair-wise sequence comparisons. Normalisation tended to increase ICCs for pre-contrast T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula>- and T<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>-weighted images, and decrease ICCs for qT<inline-formula><math display="inline"><semantics><msub><mrow></mrow><mn>1</mn></msub></semantics></math></inline-formula> maps. RCs tended to vary more between sequences than ICCs, showing that evaluations of feature performance depend on the chosen metric. This work suggests that feature-specific repeatability, from specific combinations of MR sequence and pre-processing steps, should be evaluated to select robust radiomic features as biomarkers in specific studies. In addition, as different repeatability metrics can provide different insights into a specific feature, consideration of the appropriate metric should be taken in a study-specific context.https://www.mdpi.com/2072-6694/13/2/240radiomicsMRIrepeatabilityrepeatability coefficientintraclass correlation coefficientliver metastases
spellingShingle Damien J. McHugh
Nuria Porta
Ross A. Little
Susan Cheung
Yvonne Watson
Geoff J. M. Parker
Gordon C. Jayson
James P. B. O’Connor
Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases
Cancers
radiomics
MRI
repeatability
repeatability coefficient
intraclass correlation coefficient
liver metastases
title Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases
title_full Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases
title_fullStr Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases
title_full_unstemmed Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases
title_short Image Contrast, Image Pre-Processing, and T<sub>1</sub> Mapping Affect MRI Radiomic Feature Repeatability in Patients with Colorectal Cancer Liver Metastases
title_sort image contrast image pre processing and t sub 1 sub mapping affect mri radiomic feature repeatability in patients with colorectal cancer liver metastases
topic radiomics
MRI
repeatability
repeatability coefficient
intraclass correlation coefficient
liver metastases
url https://www.mdpi.com/2072-6694/13/2/240
work_keys_str_mv AT damienjmchugh imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT nuriaporta imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT rossalittle imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT susancheung imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT yvonnewatson imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT geoffjmparker imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT gordoncjayson imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases
AT jamespboconnor imagecontrastimagepreprocessingandtsub1submappingaffectmriradiomicfeaturerepeatabilityinpatientswithcolorectalcancerlivermetastases