Vertex-edge perfect Roman domination number

A vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, o...

Full description

Bibliographic Details
Main Authors: Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu
Format: Article
Language:English
Published: AIMS Press 2023-07-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231094?viewType=HTML
_version_ 1797778034578685952
author Bana Al Subaiei
Ahlam AlMulhim
Abolape Deborah Akwu
author_facet Bana Al Subaiei
Ahlam AlMulhim
Abolape Deborah Akwu
author_sort Bana Al Subaiei
collection DOAJ
description A vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, or $ v $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $. The weight of a ve-PRDF on $ G $ is the sum $ w(f) = \sum_{v\in V}f(v) $. The vertex-edge perfect Roman domination number of $ G $ (denoted by $ \gamma_{veR}^{p}(G) $) is the minimum weight of a ve-PRDF on $ G $. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree $ T $, we give upper and lower bounds for $ \gamma_{veR}^{p}(T) $ in terms of the order $ n $, $ l $ leaves and $ s $ support vertices. Lastly, we determine $ \gamma_{veR}^{p}(G) $ for Petersen, cycle and Flower snark graphs.
first_indexed 2024-03-12T23:11:30Z
format Article
id doaj.art-5e5c2418926147f0892e51c74f39b888
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-12T23:11:30Z
publishDate 2023-07-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-5e5c2418926147f0892e51c74f39b8882023-07-18T01:32:20ZengAIMS PressAIMS Mathematics2473-69882023-07-0189214722148310.3934/math.20231094Vertex-edge perfect Roman domination numberBana Al Subaiei0Ahlam AlMulhim1Abolape Deborah Akwu 21. Department of Mathematics and Statistics, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia1. Department of Mathematics and Statistics, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa, 31982, Saudi Arabia2. Department of Mathematics, College of Science, Federal University of Agriculture, Makurdi, NigeriaA vertex-edge perfect Roman dominating function on a graph $ G = (V, E) $ (denoted by ve-PRDF) is a function $ f:V\left(G\right)\longrightarrow\{0, 1, 2\} $ such that for every edge $ uv\in E $, $ \max\{f(u), f(v)\}\neq0 $, or $ u $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $, or $ v $ is adjacent to exactly one neighbor $ w $ such that $ f(w) = 2 $. The weight of a ve-PRDF on $ G $ is the sum $ w(f) = \sum_{v\in V}f(v) $. The vertex-edge perfect Roman domination number of $ G $ (denoted by $ \gamma_{veR}^{p}(G) $) is the minimum weight of a ve-PRDF on $ G $. In this paper, we first show that vertex-edge perfect Roman dominating is NP-complete for bipartite graphs. Also, for a tree $ T $, we give upper and lower bounds for $ \gamma_{veR}^{p}(T) $ in terms of the order $ n $, $ l $ leaves and $ s $ support vertices. Lastly, we determine $ \gamma_{veR}^{p}(G) $ for Petersen, cycle and Flower snark graphs.https://www.aimspress.com/article/doi/10.3934/math.20231094?viewType=HTMLvertex-edge perfect domination numbertreescyclespetersen graphbipartite graph
spellingShingle Bana Al Subaiei
Ahlam AlMulhim
Abolape Deborah Akwu
Vertex-edge perfect Roman domination number
AIMS Mathematics
vertex-edge perfect domination number
trees
cycles
petersen graph
bipartite graph
title Vertex-edge perfect Roman domination number
title_full Vertex-edge perfect Roman domination number
title_fullStr Vertex-edge perfect Roman domination number
title_full_unstemmed Vertex-edge perfect Roman domination number
title_short Vertex-edge perfect Roman domination number
title_sort vertex edge perfect roman domination number
topic vertex-edge perfect domination number
trees
cycles
petersen graph
bipartite graph
url https://www.aimspress.com/article/doi/10.3934/math.20231094?viewType=HTML
work_keys_str_mv AT banaalsubaiei vertexedgeperfectromandominationnumber
AT ahlamalmulhim vertexedgeperfectromandominationnumber
AT abolapedeborahakwu vertexedgeperfectromandominationnumber