Revisiting Keccak and Dilithium Implementations on ARMv7-M
Keccak is widely used in lattice-based cryptography (LBC) and its impact to the overall running time in LBC scheme can be predominant on platforms lacking dedicated SHA-3 instructions. This holds true on embedded devices for Kyber and Dilithium, two LBC schemes selected by NIST to be standardized a...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ruhr-Universität Bochum
2024-03-01
|
Series: | Transactions on Cryptographic Hardware and Embedded Systems |
Subjects: | |
Online Access: | https://tches.iacr.org/index.php/TCHES/article/view/11419 |
_version_ | 1797262239929991168 |
---|---|
author | Junhao Huang Alexandre Adomnicăi Jipeng Zhang Wangchen Dai Yao Liu Ray C. C. Cheung Çetin Kaya Koç Donglong Chen |
author_facet | Junhao Huang Alexandre Adomnicăi Jipeng Zhang Wangchen Dai Yao Liu Ray C. C. Cheung Çetin Kaya Koç Donglong Chen |
author_sort | Junhao Huang |
collection | DOAJ |
description |
Keccak is widely used in lattice-based cryptography (LBC) and its impact to the overall running time in LBC scheme can be predominant on platforms lacking dedicated SHA-3 instructions. This holds true on embedded devices for Kyber and Dilithium, two LBC schemes selected by NIST to be standardized as quantumsafe cryptographic algorithms. While extensive work has been done to optimize the polynomial arithmetic in these schemes, it was generally assumed that Keccak implementations were already optimal and left little room for enhancement.
In this paper, we revisit various optimization techniques for both Keccak and Dilithium on two ARMv7-M processors, i.e., Cortex-M3 and M4. For Keccak, we improve its efficiency using two architecture-specific optimizations, namely lazy rotation and memory access pipelining, on ARMv7-M processors. These optimizations yield performance gains of up to 24.78% and 21.4% for the largest Keccak permutation instance on Cortex-M3 and M4, respectively. As for Dilithium, we first apply the multi-moduli NTT for the small polynomial multiplication cti on Cortex-M3. Then, we thoroughly integrate the efficient Plantard arithmetic to the 16-bit NTTs for computing the small polynomial multiplications csi and cti on Cortex-M3 and M4. We show that the multi-moduli NTT combined with the efficient Plantard arithmetic could obtain significant speed-ups for the small polynomial multiplications of Dilithium on Cortex-M3. Combining all the aforementioned optimizations for both Keccak and Dilithium, we obtain 15.44% ∼ 23.75% and 13.94% ∼ 15.52% speed-ups for Dilithium on Cortex-M3 and M4, respectively. Furthermore, we also demonstrate that the Keccak optimizations yield 13.35% to 15.00% speed-ups for Kyber, and our Keccak optimizations decrease the proportion of time spent on hashing in Dilithium and Kyber by 2.46% ∼ 5.03% on Cortex-M4.
|
first_indexed | 2024-04-24T23:53:58Z |
format | Article |
id | doaj.art-5e78fc90c44a4a0ea9d9e6a83c4bc3c9 |
institution | Directory Open Access Journal |
issn | 2569-2925 |
language | English |
last_indexed | 2024-04-24T23:53:58Z |
publishDate | 2024-03-01 |
publisher | Ruhr-Universität Bochum |
record_format | Article |
series | Transactions on Cryptographic Hardware and Embedded Systems |
spelling | doaj.art-5e78fc90c44a4a0ea9d9e6a83c4bc3c92024-03-14T16:24:50ZengRuhr-Universität BochumTransactions on Cryptographic Hardware and Embedded Systems2569-29252024-03-012024210.46586/tches.v2024.i2.1-24Revisiting Keccak and Dilithium Implementations on ARMv7-MJunhao Huang0Alexandre Adomnicăi1Jipeng Zhang2Wangchen Dai3Yao Liu4Ray C. C. Cheung5Çetin Kaya Koç6Donglong Chen7Guangdong Provincial Key Laboratory IRADS, BNU-HKBU United International College, Zhuhai, China; Hong Kong Baptist University, Hong Kong, ChinaIndependent researcher, Paris, FranceNanjing University of Aeronautics and Astronautics, Nanjing, ChinaZhejiang Lab, Hangzhou, ChinaSun Yat-sen University, Zhuhai, ChinaCity University of Hong Kong, Hong Kong, ChinaNanjing University of Aeronautics and Astronautics, Nanjing, China; Iˇgdır University, Merkez, Turkey; University of California Santa Barbara, Santa Barbara, USAGuangdong Provincial Key Laboratory IRADS, BNU-HKBU United International College, Zhuhai, China Keccak is widely used in lattice-based cryptography (LBC) and its impact to the overall running time in LBC scheme can be predominant on platforms lacking dedicated SHA-3 instructions. This holds true on embedded devices for Kyber and Dilithium, two LBC schemes selected by NIST to be standardized as quantumsafe cryptographic algorithms. While extensive work has been done to optimize the polynomial arithmetic in these schemes, it was generally assumed that Keccak implementations were already optimal and left little room for enhancement. In this paper, we revisit various optimization techniques for both Keccak and Dilithium on two ARMv7-M processors, i.e., Cortex-M3 and M4. For Keccak, we improve its efficiency using two architecture-specific optimizations, namely lazy rotation and memory access pipelining, on ARMv7-M processors. These optimizations yield performance gains of up to 24.78% and 21.4% for the largest Keccak permutation instance on Cortex-M3 and M4, respectively. As for Dilithium, we first apply the multi-moduli NTT for the small polynomial multiplication cti on Cortex-M3. Then, we thoroughly integrate the efficient Plantard arithmetic to the 16-bit NTTs for computing the small polynomial multiplications csi and cti on Cortex-M3 and M4. We show that the multi-moduli NTT combined with the efficient Plantard arithmetic could obtain significant speed-ups for the small polynomial multiplications of Dilithium on Cortex-M3. Combining all the aforementioned optimizations for both Keccak and Dilithium, we obtain 15.44% ∼ 23.75% and 13.94% ∼ 15.52% speed-ups for Dilithium on Cortex-M3 and M4, respectively. Furthermore, we also demonstrate that the Keccak optimizations yield 13.35% to 15.00% speed-ups for Kyber, and our Keccak optimizations decrease the proportion of time spent on hashing in Dilithium and Kyber by 2.46% ∼ 5.03% on Cortex-M4. https://tches.iacr.org/index.php/TCHES/article/view/11419KeccakDilithiumARMv7-MPlantard arithmeticlattice-based cryptography |
spellingShingle | Junhao Huang Alexandre Adomnicăi Jipeng Zhang Wangchen Dai Yao Liu Ray C. C. Cheung Çetin Kaya Koç Donglong Chen Revisiting Keccak and Dilithium Implementations on ARMv7-M Transactions on Cryptographic Hardware and Embedded Systems Keccak Dilithium ARMv7-M Plantard arithmetic lattice-based cryptography |
title | Revisiting Keccak and Dilithium Implementations on ARMv7-M |
title_full | Revisiting Keccak and Dilithium Implementations on ARMv7-M |
title_fullStr | Revisiting Keccak and Dilithium Implementations on ARMv7-M |
title_full_unstemmed | Revisiting Keccak and Dilithium Implementations on ARMv7-M |
title_short | Revisiting Keccak and Dilithium Implementations on ARMv7-M |
title_sort | revisiting keccak and dilithium implementations on armv7 m |
topic | Keccak Dilithium ARMv7-M Plantard arithmetic lattice-based cryptography |
url | https://tches.iacr.org/index.php/TCHES/article/view/11419 |
work_keys_str_mv | AT junhaohuang revisitingkeccakanddilithiumimplementationsonarmv7m AT alexandreadomnicai revisitingkeccakanddilithiumimplementationsonarmv7m AT jipengzhang revisitingkeccakanddilithiumimplementationsonarmv7m AT wangchendai revisitingkeccakanddilithiumimplementationsonarmv7m AT yaoliu revisitingkeccakanddilithiumimplementationsonarmv7m AT raycccheung revisitingkeccakanddilithiumimplementationsonarmv7m AT cetinkayakoc revisitingkeccakanddilithiumimplementationsonarmv7m AT donglongchen revisitingkeccakanddilithiumimplementationsonarmv7m |