Automatic Classification of the Ripeness Stage of Mango Fruit Using a Machine Learning Approach
Most mango farms classify the maturity stage manually by trained workers using external indicators such as size, shape, and skin color, which can lead to human error or inconsistencies. We developed four common machine learning (ML) classifiers, the k-mean, naïve Bayes, support vector machine, and f...
Autores principales: | Denchai Worasawate, Panarit Sakunasinha, Surasak Chiangga |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
MDPI AG
2022-01-01
|
Colección: | AgriEngineering |
Materias: | |
Acceso en línea: | https://www.mdpi.com/2624-7402/4/1/3 |
Ejemplares similares
-
Fruit ripeness classification: A survey
por: Matteo Rizzo, et al.
Publicado: (2023-03-01) -
Improved Maturity and Ripeness Classifications of <em>Magnifera Indica </em>cv.<em> </em>Harumanis Mangoes through Sensor Fusion of an Electronic Nose and Acoustic Sensor
por: Latifah Munirah Kamarudin, et al.
Publicado: (2012-05-01) -
Hierarchical approach for ripeness grading of mangoes
por: Anitha Raghavendra, et al.
Publicado: (2020-01-01) -
Strawberry Water Content Estimation and Ripeness Classification Using Hyperspectral Sensing
por: Rahul Raj, et al.
Publicado: (2022-02-01) -
Watermelon ripeness detector using near infrared spectroscopy
por: Edwin R. Arboleda, et al.
Publicado: (2020-10-01)