Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA

Abstract Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like...

Full description

Bibliographic Details
Main Authors: Matthias F. Block, Cyrille L. Delley, Lena M. L. Keller, Timo T. Stuehlinger, Eilika Weber-Ban
Format: Article
Language:English
Published: Nature Portfolio 2023-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-40807-8
_version_ 1797558227631603712
author Matthias F. Block
Cyrille L. Delley
Lena M. L. Keller
Timo T. Stuehlinger
Eilika Weber-Ban
author_facet Matthias F. Block
Cyrille L. Delley
Lena M. L. Keller
Timo T. Stuehlinger
Eilika Weber-Ban
author_sort Matthias F. Block
collection DOAJ
description Abstract Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like ubiquitinated proteins in eukaryotes, are recruited for proteasomal degradation. Proteomic studies suggest that hundreds of potential pupylation targets are modified by the sole existing ligase PafA. This raises intriguing questions regarding the selectivity of this enzyme towards a diverse range of substrates. Here, we show that the availability of surface lysines alone is not sufficient for interaction between PafA and target proteins. By identifying the interacting residues at the pupylation site, we demonstrate that PafA recognizes authentic substrates via a structural recognition motif centered around exposed lysines. Through a combination of computational analysis, examination of available structures and pupylated proteomes, and biochemical experiments, we elucidate the mechanism by which PafA achieves recognition of a wide array of substrates while retaining selective protein turnover.
first_indexed 2024-03-10T17:27:21Z
format Article
id doaj.art-5ea4dc9d802c4ca89e88933c0012a0d6
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-10T17:27:21Z
publishDate 2023-08-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-5ea4dc9d802c4ca89e88933c0012a0d62023-11-20T10:07:54ZengNature PortfolioNature Communications2041-17232023-08-0114111310.1038/s41467-023-40807-8Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafAMatthias F. Block0Cyrille L. Delley1Lena M. L. Keller2Timo T. Stuehlinger3Eilika Weber-Ban4ETH Zurich, Institute of Molecular Biology & BiophysicsETH Zurich, Institute of Molecular Biology & BiophysicsETH Zurich, Institute of Molecular Biology & BiophysicsETH Zurich, Institute of Molecular Biology & BiophysicsETH Zurich, Institute of Molecular Biology & BiophysicsAbstract Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like ubiquitinated proteins in eukaryotes, are recruited for proteasomal degradation. Proteomic studies suggest that hundreds of potential pupylation targets are modified by the sole existing ligase PafA. This raises intriguing questions regarding the selectivity of this enzyme towards a diverse range of substrates. Here, we show that the availability of surface lysines alone is not sufficient for interaction between PafA and target proteins. By identifying the interacting residues at the pupylation site, we demonstrate that PafA recognizes authentic substrates via a structural recognition motif centered around exposed lysines. Through a combination of computational analysis, examination of available structures and pupylated proteomes, and biochemical experiments, we elucidate the mechanism by which PafA achieves recognition of a wide array of substrates while retaining selective protein turnover.https://doi.org/10.1038/s41467-023-40807-8
spellingShingle Matthias F. Block
Cyrille L. Delley
Lena M. L. Keller
Timo T. Stuehlinger
Eilika Weber-Ban
Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA
Nature Communications
title Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA
title_full Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA
title_fullStr Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA
title_full_unstemmed Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA
title_short Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA
title_sort electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin like protein ligase pafa
url https://doi.org/10.1038/s41467-023-40807-8
work_keys_str_mv AT matthiasfblock electrostaticinteractionsguidesubstraterecognitionoftheprokaryoticubiquitinlikeproteinligasepafa
AT cyrilleldelley electrostaticinteractionsguidesubstraterecognitionoftheprokaryoticubiquitinlikeproteinligasepafa
AT lenamlkeller electrostaticinteractionsguidesubstraterecognitionoftheprokaryoticubiquitinlikeproteinligasepafa
AT timotstuehlinger electrostaticinteractionsguidesubstraterecognitionoftheprokaryoticubiquitinlikeproteinligasepafa
AT eilikaweberban electrostaticinteractionsguidesubstraterecognitionoftheprokaryoticubiquitinlikeproteinligasepafa