Bypassing the Kohn-Sham equations with machine learning

Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

Bibliographic Details
Main Authors: Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke, Klaus-Robert Müller
Format: Article
Language:English
Published: Nature Portfolio 2017-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-017-00839-3
_version_ 1818843320437178368
author Felix Brockherde
Leslie Vogt
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus-Robert Müller
author_facet Felix Brockherde
Leslie Vogt
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus-Robert Müller
author_sort Felix Brockherde
collection DOAJ
description Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.
first_indexed 2024-12-19T04:56:00Z
format Article
id doaj.art-5eb66063f9824f3e9aa4606612d626ee
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-19T04:56:00Z
publishDate 2017-10-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-5eb66063f9824f3e9aa4606612d626ee2022-12-21T20:35:14ZengNature PortfolioNature Communications2041-17232017-10-018111010.1038/s41467-017-00839-3Bypassing the Kohn-Sham equations with machine learningFelix Brockherde0Leslie Vogt1Li Li2Mark E. Tuckerman3Kieron Burke4Klaus-Robert Müller5Machine Learning Group, Technische Universität BerlinDepartment of Chemistry, New York UniversityDepartment of Physics and Astronomy, University of CaliforniaDepartment of Chemistry, New York UniversityDepartment of Physics and Astronomy, University of CaliforniaMachine Learning Group, Technische Universität BerlinMachine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.https://doi.org/10.1038/s41467-017-00839-3
spellingShingle Felix Brockherde
Leslie Vogt
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus-Robert Müller
Bypassing the Kohn-Sham equations with machine learning
Nature Communications
title Bypassing the Kohn-Sham equations with machine learning
title_full Bypassing the Kohn-Sham equations with machine learning
title_fullStr Bypassing the Kohn-Sham equations with machine learning
title_full_unstemmed Bypassing the Kohn-Sham equations with machine learning
title_short Bypassing the Kohn-Sham equations with machine learning
title_sort bypassing the kohn sham equations with machine learning
url https://doi.org/10.1038/s41467-017-00839-3
work_keys_str_mv AT felixbrockherde bypassingthekohnshamequationswithmachinelearning
AT leslievogt bypassingthekohnshamequationswithmachinelearning
AT lili bypassingthekohnshamequationswithmachinelearning
AT marketuckerman bypassingthekohnshamequationswithmachinelearning
AT kieronburke bypassingthekohnshamequationswithmachinelearning
AT klausrobertmuller bypassingthekohnshamequationswithmachinelearning