Three-dimensional printed microcantilever with mechanical metamaterial for fiber-optic microforce sensing

Mechanical metamaterials can adjust mechanical properties of structures flexibly through a mechanical structural design based on the premise that the materials remain unchanged. Here, a cantilever probe microstructure is designed using mechanical metamaterials for an optical fiber microforce sensor...

Full description

Bibliographic Details
Main Authors: Famei Wang, Mengqiang Zou, Changrui Liao, Bozhe Li, Dejun Liu, Jie Zhou, Haoqiang Huang, Jinlai Zhao, Chao Liu, Paul K. Chu, Yiping Wang
Format: Article
Language:English
Published: AIP Publishing LLC 2023-09-01
Series:APL Photonics
Online Access:http://dx.doi.org/10.1063/5.0159706
Description
Summary:Mechanical metamaterials can adjust mechanical properties of structures flexibly through a mechanical structural design based on the premise that the materials remain unchanged. Here, a cantilever probe microstructure is designed using mechanical metamaterials for an optical fiber microforce sensor tip that can be prepared by femtosecond laser-induced two-photon polymerization. The elastic constant k of the fabricated fiber-optic microforce sensor has been adjusted by two orders of magnitude from 0.165 to 46 N/m, and the geometric configuration of the cantilever beam can be tailored to match the mechanical properties of biological specimens. This fiber microforce sensor shows an ultra-high force sensitivity of 154 nm/µN and a force resolution of up to 130 pN. The optical fiber microforce sensor that shows the lowest force resolution in a direct-contact mode has high potential for biosensing applications, and the results reveal a potential design strategy for special scanning tunneling microscope probes with unique physical properties.
ISSN:2378-0967