Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände

Two Korovkin-type theorems inspired by the work of Scheffold are given concerning the approximation of a continuous lattice homomorphism \(P\) by a sequence of certain positive linear operators \(T_n\). The first result is used to prove a generalization of a proposition of Muller dealing with appro...

Full description

Bibliographic Details
Main Author: Heiner Gonska
Format: Article
Language:English
Published: Publishing House of the Romanian Academy 2015-12-01
Series:Journal of Numerical Analysis and Approximation Theory
Subjects:
Online Access:https://ictp.acad.ro/jnaat/journal/article/view/1061
_version_ 1818529535949275136
author Heiner Gonska
author_facet Heiner Gonska
author_sort Heiner Gonska
collection DOAJ
description Two Korovkin-type theorems inspired by the work of Scheffold are given concerning the approximation of a continuous lattice homomorphism \(P\) by a sequence of certain positive linear operators \(T_n\). The first result is used to prove a generalization of a proposition of Muller dealing with approximation in Banach function spaces.
first_indexed 2024-12-11T17:08:07Z
format Article
id doaj.art-5ed01a2813dd46e39d099203fd2bff08
institution Directory Open Access Journal
issn 2457-6794
2501-059X
language English
last_indexed 2024-12-11T17:08:07Z
publishDate 2015-12-01
publisher Publishing House of the Romanian Academy
record_format Article
series Journal of Numerical Analysis and Approximation Theory
spelling doaj.art-5ed01a2813dd46e39d099203fd2bff082022-12-22T00:57:37ZengPublishing House of the Romanian AcademyJournal of Numerical Analysis and Approximation Theory2457-67942501-059X2015-12-01441Sätze vom Bohman-Korovkin-Typ für lokalkonvexe VektorverbändeHeiner Gonska0University of Duisburg-Essen Two Korovkin-type theorems inspired by the work of Scheffold are given concerning the approximation of a continuous lattice homomorphism \(P\) by a sequence of certain positive linear operators \(T_n\). The first result is used to prove a generalization of a proposition of Muller dealing with approximation in Banach function spaces. https://ictp.acad.ro/jnaat/journal/article/view/1061Korovkin-type theoremapproximation of lattice homomorphismspositive linear operatorsBanach function spaces.
spellingShingle Heiner Gonska
Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
Journal of Numerical Analysis and Approximation Theory
Korovkin-type theorem
approximation of lattice homomorphisms
positive linear operators
Banach function spaces.
title Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
title_full Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
title_fullStr Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
title_full_unstemmed Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
title_short Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
title_sort satze vom bohman korovkin typ fur lokalkonvexe vektorverbande
topic Korovkin-type theorem
approximation of lattice homomorphisms
positive linear operators
Banach function spaces.
url https://ictp.acad.ro/jnaat/journal/article/view/1061
work_keys_str_mv AT heinergonska satzevombohmankorovkintypfurlokalkonvexevektorverbande