Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände
Two Korovkin-type theorems inspired by the work of Scheffold are given concerning the approximation of a continuous lattice homomorphism \(P\) by a sequence of certain positive linear operators \(T_n\). The first result is used to prove a generalization of a proposition of Muller dealing with appro...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Publishing House of the Romanian Academy
2015-12-01
|
Series: | Journal of Numerical Analysis and Approximation Theory |
Subjects: | |
Online Access: | https://ictp.acad.ro/jnaat/journal/article/view/1061 |
_version_ | 1818529535949275136 |
---|---|
author | Heiner Gonska |
author_facet | Heiner Gonska |
author_sort | Heiner Gonska |
collection | DOAJ |
description |
Two Korovkin-type theorems inspired by the work of Scheffold are given concerning the approximation of a continuous lattice homomorphism \(P\) by a sequence of certain positive linear operators \(T_n\). The first result is used to prove a generalization of a proposition of Muller dealing with approximation in Banach function spaces.
|
first_indexed | 2024-12-11T17:08:07Z |
format | Article |
id | doaj.art-5ed01a2813dd46e39d099203fd2bff08 |
institution | Directory Open Access Journal |
issn | 2457-6794 2501-059X |
language | English |
last_indexed | 2024-12-11T17:08:07Z |
publishDate | 2015-12-01 |
publisher | Publishing House of the Romanian Academy |
record_format | Article |
series | Journal of Numerical Analysis and Approximation Theory |
spelling | doaj.art-5ed01a2813dd46e39d099203fd2bff082022-12-22T00:57:37ZengPublishing House of the Romanian AcademyJournal of Numerical Analysis and Approximation Theory2457-67942501-059X2015-12-01441Sätze vom Bohman-Korovkin-Typ für lokalkonvexe VektorverbändeHeiner Gonska0University of Duisburg-Essen Two Korovkin-type theorems inspired by the work of Scheffold are given concerning the approximation of a continuous lattice homomorphism \(P\) by a sequence of certain positive linear operators \(T_n\). The first result is used to prove a generalization of a proposition of Muller dealing with approximation in Banach function spaces. https://ictp.acad.ro/jnaat/journal/article/view/1061Korovkin-type theoremapproximation of lattice homomorphismspositive linear operatorsBanach function spaces. |
spellingShingle | Heiner Gonska Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände Journal of Numerical Analysis and Approximation Theory Korovkin-type theorem approximation of lattice homomorphisms positive linear operators Banach function spaces. |
title | Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände |
title_full | Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände |
title_fullStr | Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände |
title_full_unstemmed | Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände |
title_short | Sätze vom Bohman-Korovkin-Typ für lokalkonvexe Vektorverbände |
title_sort | satze vom bohman korovkin typ fur lokalkonvexe vektorverbande |
topic | Korovkin-type theorem approximation of lattice homomorphisms positive linear operators Banach function spaces. |
url | https://ictp.acad.ro/jnaat/journal/article/view/1061 |
work_keys_str_mv | AT heinergonska satzevombohmankorovkintypfurlokalkonvexevektorverbande |