Quaternion Electromagnetism and the Relation with Two-Spinor Formalism

By using complex quaternion, which is the system of quaternion representation extended to complex numbers, we show that the laws of electromagnetism can be expressed much more simply and concisely. We also derive the quaternion representation of rotations and boosts from the spinor representation of...

Full description

Bibliographic Details
Main Authors: In Ki Hong, Choong Sun Kim
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/5/6/135
Description
Summary:By using complex quaternion, which is the system of quaternion representation extended to complex numbers, we show that the laws of electromagnetism can be expressed much more simply and concisely. We also derive the quaternion representation of rotations and boosts from the spinor representation of Lorentz group. It is suggested that the imaginary &#8220;<i>i</i>&#8221; should be attached to the spatial coordinates, and observe that the complex conjugate of quaternion representation is exactly equal to parity inversion of all physical quantities in the quaternion. We also show that using quaternion is directly linked to the two-spinor formalism. Finally, we discuss meanings of quaternion, octonion and sedenion in physics as n-fold rotation.
ISSN:2218-1997