Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China

Assessing the landscape ecological risk (LER) will facilitate optimal planning of land-use patterns and mitigating regional ecological risks, especially in megacities under rapid urbanization. And selecting the appropriate spatial analysis scales is the prerequisite for accurate assessment of the LE...

Full description

Bibliographic Details
Main Authors: Bingjie Li, Yuanyuan Yang, Limin Jiao, Mingying Yang, Ting Li
Format: Article
Language:English
Published: Elsevier 2023-10-01
Series:Ecological Indicators
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1470160X23009226
_version_ 1797683067076214784
author Bingjie Li
Yuanyuan Yang
Limin Jiao
Mingying Yang
Ting Li
author_facet Bingjie Li
Yuanyuan Yang
Limin Jiao
Mingying Yang
Ting Li
author_sort Bingjie Li
collection DOAJ
description Assessing the landscape ecological risk (LER) will facilitate optimal planning of land-use patterns and mitigating regional ecological risks, especially in megacities under rapid urbanization. And selecting the appropriate spatial analysis scales is the prerequisite for accurate assessment of the LER. In this study, we demonstrate the spatio-temporal dynamics of LER by determining the appropriate spatial scales in Beijing, China from 2000 to 2020. The results indicate that a granularity of 50 m and a magnitude of 5 km are optimal for regional LER assessment. The study area had predominantly medium risks, with medium, high and higher risks accounting for approximately 70% that revealed LER was at high level. Fortunately, the high and higher risks decreased by 14.64% while low and lower risks increased by 16.62% over the past two decades, which indicated LER was on a general downward trend. The LER pattern varies from east to west, with high and higher risks clustered in the northeast and southeast of the city center, and gradually dispersing elsewhere. In contrast, low and lower risks were predominantly in the city center and western regions, expanding outward from the city center. The LER was low in built-up land and cropland in the central city, but relatively high in areas away from it. The urban fringe areas dominated by woodland and grassland exhibited a high LER. The regional LER differentiation is spatially correlated with urban expressways and significant changes in LER were predominantly observed in areas adjacent to urban expressways. Specifically, the expansion of low and lower risks occurred outward along the ring roads of Beijing, and a typical case was that the lower risks were primarily enclosed by the fifth ring road in 2000 and gradually expanded towards the areas near the sixth ring road by 2020. Moreover, the LER manifests obvious spatial agglomeration influenced by human disturbance, with apparent high-high and low-low agglomerations. It is suggested to implement landscape optimization by enhancing the landscape diversity and connectivity to effectively mitigate ecological risks. These findings will provide scientific reference for researches aimed at mitigating ecological risks and fostering high-quality sustainable development in metropolitan areas.
first_indexed 2024-03-12T00:10:08Z
format Article
id doaj.art-5eeb75e0bc834532bb9e46f5e2ad82db
institution Directory Open Access Journal
issn 1470-160X
language English
last_indexed 2024-03-12T00:10:08Z
publishDate 2023-10-01
publisher Elsevier
record_format Article
series Ecological Indicators
spelling doaj.art-5eeb75e0bc834532bb9e46f5e2ad82db2023-09-16T05:29:56ZengElsevierEcological Indicators1470-160X2023-10-01154110780Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, ChinaBingjie Li0Yuanyuan Yang1Limin Jiao2Mingying Yang3Ting Li4School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, ChinaSchool of Public Administration and Policy, Renmin University of China, Beijing 100872, China; Corresponding author.School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, ChinaInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, Beijing, ChinaCollege of Geography and Environmental Sciences, Hainan Normal University, Haikou 571158, Hainan, ChinaAssessing the landscape ecological risk (LER) will facilitate optimal planning of land-use patterns and mitigating regional ecological risks, especially in megacities under rapid urbanization. And selecting the appropriate spatial analysis scales is the prerequisite for accurate assessment of the LER. In this study, we demonstrate the spatio-temporal dynamics of LER by determining the appropriate spatial scales in Beijing, China from 2000 to 2020. The results indicate that a granularity of 50 m and a magnitude of 5 km are optimal for regional LER assessment. The study area had predominantly medium risks, with medium, high and higher risks accounting for approximately 70% that revealed LER was at high level. Fortunately, the high and higher risks decreased by 14.64% while low and lower risks increased by 16.62% over the past two decades, which indicated LER was on a general downward trend. The LER pattern varies from east to west, with high and higher risks clustered in the northeast and southeast of the city center, and gradually dispersing elsewhere. In contrast, low and lower risks were predominantly in the city center and western regions, expanding outward from the city center. The LER was low in built-up land and cropland in the central city, but relatively high in areas away from it. The urban fringe areas dominated by woodland and grassland exhibited a high LER. The regional LER differentiation is spatially correlated with urban expressways and significant changes in LER were predominantly observed in areas adjacent to urban expressways. Specifically, the expansion of low and lower risks occurred outward along the ring roads of Beijing, and a typical case was that the lower risks were primarily enclosed by the fifth ring road in 2000 and gradually expanded towards the areas near the sixth ring road by 2020. Moreover, the LER manifests obvious spatial agglomeration influenced by human disturbance, with apparent high-high and low-low agglomerations. It is suggested to implement landscape optimization by enhancing the landscape diversity and connectivity to effectively mitigate ecological risks. These findings will provide scientific reference for researches aimed at mitigating ecological risks and fostering high-quality sustainable development in metropolitan areas.http://www.sciencedirect.com/science/article/pii/S1470160X23009226Ecologically appropriate scalesLandscape ecological riskLandscape patternMegacity BeijingSpatio-temporal dynamics
spellingShingle Bingjie Li
Yuanyuan Yang
Limin Jiao
Mingying Yang
Ting Li
Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
Ecological Indicators
Ecologically appropriate scales
Landscape ecological risk
Landscape pattern
Megacity Beijing
Spatio-temporal dynamics
title Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
title_full Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
title_fullStr Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
title_full_unstemmed Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
title_short Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
title_sort selecting ecologically appropriate scales to assess landscape ecological risk in megacity beijing china
topic Ecologically appropriate scales
Landscape ecological risk
Landscape pattern
Megacity Beijing
Spatio-temporal dynamics
url http://www.sciencedirect.com/science/article/pii/S1470160X23009226
work_keys_str_mv AT bingjieli selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina
AT yuanyuanyang selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina
AT liminjiao selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina
AT mingyingyang selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina
AT tingli selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina