Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China
Assessing the landscape ecological risk (LER) will facilitate optimal planning of land-use patterns and mitigating regional ecological risks, especially in megacities under rapid urbanization. And selecting the appropriate spatial analysis scales is the prerequisite for accurate assessment of the LE...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-10-01
|
Series: | Ecological Indicators |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1470160X23009226 |
_version_ | 1797683067076214784 |
---|---|
author | Bingjie Li Yuanyuan Yang Limin Jiao Mingying Yang Ting Li |
author_facet | Bingjie Li Yuanyuan Yang Limin Jiao Mingying Yang Ting Li |
author_sort | Bingjie Li |
collection | DOAJ |
description | Assessing the landscape ecological risk (LER) will facilitate optimal planning of land-use patterns and mitigating regional ecological risks, especially in megacities under rapid urbanization. And selecting the appropriate spatial analysis scales is the prerequisite for accurate assessment of the LER. In this study, we demonstrate the spatio-temporal dynamics of LER by determining the appropriate spatial scales in Beijing, China from 2000 to 2020. The results indicate that a granularity of 50 m and a magnitude of 5 km are optimal for regional LER assessment. The study area had predominantly medium risks, with medium, high and higher risks accounting for approximately 70% that revealed LER was at high level. Fortunately, the high and higher risks decreased by 14.64% while low and lower risks increased by 16.62% over the past two decades, which indicated LER was on a general downward trend. The LER pattern varies from east to west, with high and higher risks clustered in the northeast and southeast of the city center, and gradually dispersing elsewhere. In contrast, low and lower risks were predominantly in the city center and western regions, expanding outward from the city center. The LER was low in built-up land and cropland in the central city, but relatively high in areas away from it. The urban fringe areas dominated by woodland and grassland exhibited a high LER. The regional LER differentiation is spatially correlated with urban expressways and significant changes in LER were predominantly observed in areas adjacent to urban expressways. Specifically, the expansion of low and lower risks occurred outward along the ring roads of Beijing, and a typical case was that the lower risks were primarily enclosed by the fifth ring road in 2000 and gradually expanded towards the areas near the sixth ring road by 2020. Moreover, the LER manifests obvious spatial agglomeration influenced by human disturbance, with apparent high-high and low-low agglomerations. It is suggested to implement landscape optimization by enhancing the landscape diversity and connectivity to effectively mitigate ecological risks. These findings will provide scientific reference for researches aimed at mitigating ecological risks and fostering high-quality sustainable development in metropolitan areas. |
first_indexed | 2024-03-12T00:10:08Z |
format | Article |
id | doaj.art-5eeb75e0bc834532bb9e46f5e2ad82db |
institution | Directory Open Access Journal |
issn | 1470-160X |
language | English |
last_indexed | 2024-03-12T00:10:08Z |
publishDate | 2023-10-01 |
publisher | Elsevier |
record_format | Article |
series | Ecological Indicators |
spelling | doaj.art-5eeb75e0bc834532bb9e46f5e2ad82db2023-09-16T05:29:56ZengElsevierEcological Indicators1470-160X2023-10-01154110780Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, ChinaBingjie Li0Yuanyuan Yang1Limin Jiao2Mingying Yang3Ting Li4School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, ChinaSchool of Public Administration and Policy, Renmin University of China, Beijing 100872, China; Corresponding author.School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, ChinaInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, Beijing, ChinaCollege of Geography and Environmental Sciences, Hainan Normal University, Haikou 571158, Hainan, ChinaAssessing the landscape ecological risk (LER) will facilitate optimal planning of land-use patterns and mitigating regional ecological risks, especially in megacities under rapid urbanization. And selecting the appropriate spatial analysis scales is the prerequisite for accurate assessment of the LER. In this study, we demonstrate the spatio-temporal dynamics of LER by determining the appropriate spatial scales in Beijing, China from 2000 to 2020. The results indicate that a granularity of 50 m and a magnitude of 5 km are optimal for regional LER assessment. The study area had predominantly medium risks, with medium, high and higher risks accounting for approximately 70% that revealed LER was at high level. Fortunately, the high and higher risks decreased by 14.64% while low and lower risks increased by 16.62% over the past two decades, which indicated LER was on a general downward trend. The LER pattern varies from east to west, with high and higher risks clustered in the northeast and southeast of the city center, and gradually dispersing elsewhere. In contrast, low and lower risks were predominantly in the city center and western regions, expanding outward from the city center. The LER was low in built-up land and cropland in the central city, but relatively high in areas away from it. The urban fringe areas dominated by woodland and grassland exhibited a high LER. The regional LER differentiation is spatially correlated with urban expressways and significant changes in LER were predominantly observed in areas adjacent to urban expressways. Specifically, the expansion of low and lower risks occurred outward along the ring roads of Beijing, and a typical case was that the lower risks were primarily enclosed by the fifth ring road in 2000 and gradually expanded towards the areas near the sixth ring road by 2020. Moreover, the LER manifests obvious spatial agglomeration influenced by human disturbance, with apparent high-high and low-low agglomerations. It is suggested to implement landscape optimization by enhancing the landscape diversity and connectivity to effectively mitigate ecological risks. These findings will provide scientific reference for researches aimed at mitigating ecological risks and fostering high-quality sustainable development in metropolitan areas.http://www.sciencedirect.com/science/article/pii/S1470160X23009226Ecologically appropriate scalesLandscape ecological riskLandscape patternMegacity BeijingSpatio-temporal dynamics |
spellingShingle | Bingjie Li Yuanyuan Yang Limin Jiao Mingying Yang Ting Li Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China Ecological Indicators Ecologically appropriate scales Landscape ecological risk Landscape pattern Megacity Beijing Spatio-temporal dynamics |
title | Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China |
title_full | Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China |
title_fullStr | Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China |
title_full_unstemmed | Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China |
title_short | Selecting ecologically appropriate scales to assess landscape ecological risk in megacity Beijing, China |
title_sort | selecting ecologically appropriate scales to assess landscape ecological risk in megacity beijing china |
topic | Ecologically appropriate scales Landscape ecological risk Landscape pattern Megacity Beijing Spatio-temporal dynamics |
url | http://www.sciencedirect.com/science/article/pii/S1470160X23009226 |
work_keys_str_mv | AT bingjieli selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina AT yuanyuanyang selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina AT liminjiao selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina AT mingyingyang selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina AT tingli selectingecologicallyappropriatescalestoassesslandscapeecologicalriskinmegacitybeijingchina |