SOFTWARE COMPARISON FOR UNDERWATER ARCHAEOLOGICAL PHOTOGRAMMETRIC APPLICATIONS

<p>This paper presents an investigation as to whether and how the selection of the SfM-MVS software affects the 3D reconstruction of submerged archaeological sites. Specifically, Agisoft Photoscan, VisualSFM, SURE, 3D Zephyr and Reality Capture software were used and evaluated according to the...

Full description

Bibliographic Details
Main Authors: M. Vlachos, L. Berger, R. Mathelier, P. Agrafiotis, D. Skarlatos
Format: Article
Language:English
Published: Copernicus Publications 2019-08-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W15/1195/2019/isprs-archives-XLII-2-W15-1195-2019.pdf
Description
Summary:<p>This paper presents an investigation as to whether and how the selection of the SfM-MVS software affects the 3D reconstruction of submerged archaeological sites. Specifically, Agisoft Photoscan, VisualSFM, SURE, 3D Zephyr and Reality Capture software were used and evaluated according to their performance in 3D reconstruction using specific metrics over the reconstructed underwater scenes. It must be clarified that the scope of this study is not to evaluate specific algorithms or steps that the various software use, but to evaluate the final results and specifically the generated 3D point clouds. To address the above research issues, a dataset from the ancient shipwreck, laying at 45 meters below sea level, is used. The dataset is composed of 19 images having very small camera to object distance (1 meter), and 42 images with higher camera to object distance (3 meters) images. Using a common bundle adjustment for all 61 images, a reference point cloud resulted from the lower dataset is used to compare it with the point clouds of the higher dataset generated using the different photogrammetric packages. Following that, a comparison regarding the number of total points, cloud to cloud distances, surface roughness, surface density and a combined 3D metric was done to evaluate and see which one performed the best.</p>
ISSN:1682-1750
2194-9034