Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces

The idea of enriched mappings in normed spaces is relatively a newer idea. In this paper, we initiate the study of enriched mappings in modular function spaces. We first introduce the concepts of enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display=&qu...

Full description

Bibliographic Details
Main Authors: Safeer Hussain Khan, Abdullah Eqal Al-Mazrooei, Abdul Latif
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/6/549
_version_ 1797596092529901568
author Safeer Hussain Khan
Abdullah Eqal Al-Mazrooei
Abdul Latif
author_facet Safeer Hussain Khan
Abdullah Eqal Al-Mazrooei
Abdul Latif
author_sort Safeer Hussain Khan
collection DOAJ
description The idea of enriched mappings in normed spaces is relatively a newer idea. In this paper, we initiate the study of enriched mappings in modular function spaces. We first introduce the concepts of enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-contractions and enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings in modular function spaces. We then establish some Banach Contraction Principle type theorems for the existence of fixed points of such mappings in this setting. Our results for enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-contractions are generalizations of the corresponding results from Banach spaces to modular function spaces and those from contractions to enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-contractions. We make a first ever attempt to prove existence results for enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings and deduce the result for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings. Note that even <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings in modular function spaces have not been considered yet. We validate our main results by examples.
first_indexed 2024-03-11T02:46:44Z
format Article
id doaj.art-5f29d6c490004b159923d9770d39b3ba
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T02:46:44Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-5f29d6c490004b159923d9770d39b3ba2023-11-18T09:16:37ZengMDPI AGAxioms2075-16802023-06-0112654910.3390/axioms12060549Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function SpacesSafeer Hussain Khan0Abdullah Eqal Al-Mazrooei1Abdul Latif2Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54000, PakistanDepartment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaThe idea of enriched mappings in normed spaces is relatively a newer idea. In this paper, we initiate the study of enriched mappings in modular function spaces. We first introduce the concepts of enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-contractions and enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings in modular function spaces. We then establish some Banach Contraction Principle type theorems for the existence of fixed points of such mappings in this setting. Our results for enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-contractions are generalizations of the corresponding results from Banach spaces to modular function spaces and those from contractions to enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-contractions. We make a first ever attempt to prove existence results for enriched <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings and deduce the result for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings. Note that even <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ρ</mi></semantics></math></inline-formula>-Kannan mappings in modular function spaces have not been considered yet. We validate our main results by examples.https://www.mdpi.com/2075-1680/12/6/549fixed pointenriched ρ-contractionenriched ρ-Kannan mappingiterative processmodular function space
spellingShingle Safeer Hussain Khan
Abdullah Eqal Al-Mazrooei
Abdul Latif
Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces
Axioms
fixed point
enriched ρ-contraction
enriched ρ-Kannan mapping
iterative process
modular function space
title Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces
title_full Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces
title_fullStr Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces
title_full_unstemmed Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces
title_short Banach Contraction Principle-Type Results for Some Enriched Mappings in Modular Function Spaces
title_sort banach contraction principle type results for some enriched mappings in modular function spaces
topic fixed point
enriched ρ-contraction
enriched ρ-Kannan mapping
iterative process
modular function space
url https://www.mdpi.com/2075-1680/12/6/549
work_keys_str_mv AT safeerhussainkhan banachcontractionprincipletyperesultsforsomeenrichedmappingsinmodularfunctionspaces
AT abdullaheqalalmazrooei banachcontractionprincipletyperesultsforsomeenrichedmappingsinmodularfunctionspaces
AT abdullatif banachcontractionprincipletyperesultsforsomeenrichedmappingsinmodularfunctionspaces