Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations
The use of the Unmanned Aerial Vehicles (UAV) and Unmanned Aircraft System (UAS) for civil, scientific, and military operations, is constantly increasing, particularly in environments very dangerous or impossible for human actions. Many tasks are currently carried out in metropolitan areas, such as...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-04-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/9/3226 |
_version_ | 1797502912504528896 |
---|---|
author | Gennaro Ariante Salvatore Ponte Umberto Papa Alberto Greco Giuseppe Del Core |
author_facet | Gennaro Ariante Salvatore Ponte Umberto Papa Alberto Greco Giuseppe Del Core |
author_sort | Gennaro Ariante |
collection | DOAJ |
description | The use of the Unmanned Aerial Vehicles (UAV) and Unmanned Aircraft System (UAS) for civil, scientific, and military operations, is constantly increasing, particularly in environments very dangerous or impossible for human actions. Many tasks are currently carried out in metropolitan areas, such as urban traffic monitoring, pollution and land monitoring, security surveillance, delivery of small packages, etc. Estimation of features around the flight path and surveillance of crowded areas, where there is a high number of vehicles and/or obstacles, are of extreme importance for typical UAS missions. Ensuring safety and efficiency during air traffic operations in a metropolitan area is one of the conditions for Urban Air Mobility (UAM) operations. This paper focuses on the development of a ground control system capable of monitoring crowded areas or impervious sites, identifying the UAV position and a safety area for vertical landing or take-off maneuvers (VTOL), ensuring a high level of accuracy and robustness, even without using GNSS-derived navigation information, and with on-board terrain hazard detection and avoidance (DAA) capabilities, in particular during operations conducted in BVLOS (Beyond Visual Line Of Sight). The system is composed by a mechanically rotating real-time LiDAR (Light Detection and Ranging) sensor, linked to a Raspberry Pi 3 as SBC (Session Board Controller), and interfaced to a GCS (Ground Control Station) by wireless connection for data management and 3-D information transfer. |
first_indexed | 2024-03-10T03:42:56Z |
format | Article |
id | doaj.art-5f3d0112e2ce4a18839aa8cda1ca0833 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-10T03:42:56Z |
publishDate | 2022-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-5f3d0112e2ce4a18839aa8cda1ca08332023-11-23T09:15:19ZengMDPI AGSensors1424-82202022-04-01229322610.3390/s22093226Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility OperationsGennaro Ariante0Salvatore Ponte1Umberto Papa2Alberto Greco3Giuseppe Del Core4Department of Science and Technology, University of Naples “Parthenope”, 80133 Naples, ItalyDepartment of Engineering, University of Campania “L. Vanvitelli”, 81031 Aversa, ItalyDepartment of Science and Technology, University of Naples “Parthenope”, 80133 Naples, ItalyDepartment of Science and Technology, University of Naples “Parthenope”, 80133 Naples, ItalyDepartment of Science and Technology, University of Naples “Parthenope”, 80133 Naples, ItalyThe use of the Unmanned Aerial Vehicles (UAV) and Unmanned Aircraft System (UAS) for civil, scientific, and military operations, is constantly increasing, particularly in environments very dangerous or impossible for human actions. Many tasks are currently carried out in metropolitan areas, such as urban traffic monitoring, pollution and land monitoring, security surveillance, delivery of small packages, etc. Estimation of features around the flight path and surveillance of crowded areas, where there is a high number of vehicles and/or obstacles, are of extreme importance for typical UAS missions. Ensuring safety and efficiency during air traffic operations in a metropolitan area is one of the conditions for Urban Air Mobility (UAM) operations. This paper focuses on the development of a ground control system capable of monitoring crowded areas or impervious sites, identifying the UAV position and a safety area for vertical landing or take-off maneuvers (VTOL), ensuring a high level of accuracy and robustness, even without using GNSS-derived navigation information, and with on-board terrain hazard detection and avoidance (DAA) capabilities, in particular during operations conducted in BVLOS (Beyond Visual Line Of Sight). The system is composed by a mechanically rotating real-time LiDAR (Light Detection and Ranging) sensor, linked to a Raspberry Pi 3 as SBC (Session Board Controller), and interfaced to a GCS (Ground Control Station) by wireless connection for data management and 3-D information transfer.https://www.mdpi.com/1424-8220/22/9/3226UAVUASLiDARurban air mobilitysafe landing area determinationobstacle detection and avoidance |
spellingShingle | Gennaro Ariante Salvatore Ponte Umberto Papa Alberto Greco Giuseppe Del Core Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations Sensors UAV UAS LiDAR urban air mobility safe landing area determination obstacle detection and avoidance |
title | Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations |
title_full | Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations |
title_fullStr | Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations |
title_full_unstemmed | Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations |
title_short | Ground Control System for UAS Safe Landing Area Determination (SLAD) in Urban Air Mobility Operations |
title_sort | ground control system for uas safe landing area determination slad in urban air mobility operations |
topic | UAV UAS LiDAR urban air mobility safe landing area determination obstacle detection and avoidance |
url | https://www.mdpi.com/1424-8220/22/9/3226 |
work_keys_str_mv | AT gennaroariante groundcontrolsystemforuassafelandingareadeterminationsladinurbanairmobilityoperations AT salvatoreponte groundcontrolsystemforuassafelandingareadeterminationsladinurbanairmobilityoperations AT umbertopapa groundcontrolsystemforuassafelandingareadeterminationsladinurbanairmobilityoperations AT albertogreco groundcontrolsystemforuassafelandingareadeterminationsladinurbanairmobilityoperations AT giuseppedelcore groundcontrolsystemforuassafelandingareadeterminationsladinurbanairmobilityoperations |