The Newtonian Operator and Global Convergence Balls for Newton’s Method

We obtain results of restricted global convergence for Newton’s method from ideas based on the Fixed-Point theorem and using the Newtonian operator and auxiliary points. The results are illustrated with a non-linear integral equation of Davis-type and improve the results previously given by the auth...

Full description

Bibliographic Details
Main Authors: José A. Ezquerro, Miguel A. Hernández-Verón
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/7/1074
_version_ 1827713763211476992
author José A. Ezquerro
Miguel A. Hernández-Verón
author_facet José A. Ezquerro
Miguel A. Hernández-Verón
author_sort José A. Ezquerro
collection DOAJ
description We obtain results of restricted global convergence for Newton’s method from ideas based on the Fixed-Point theorem and using the Newtonian operator and auxiliary points. The results are illustrated with a non-linear integral equation of Davis-type and improve the results previously given by the authors.
first_indexed 2024-03-10T18:43:33Z
format Article
id doaj.art-5f55f6e25bc14acdaebbdd2449c0777c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T18:43:33Z
publishDate 2020-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-5f55f6e25bc14acdaebbdd2449c0777c2023-11-20T05:38:46ZengMDPI AGMathematics2227-73902020-07-0187107410.3390/math8071074The Newtonian Operator and Global Convergence Balls for Newton’s MethodJosé A. Ezquerro0Miguel A. Hernández-Verón1Department of Mathematics and Computation, University of La Rioja, alle Madre de Dios, 53, 26006 Logroño, La Rioja, SpainDepartment of Mathematics and Computation, University of La Rioja, alle Madre de Dios, 53, 26006 Logroño, La Rioja, SpainWe obtain results of restricted global convergence for Newton’s method from ideas based on the Fixed-Point theorem and using the Newtonian operator and auxiliary points. The results are illustrated with a non-linear integral equation of Davis-type and improve the results previously given by the authors.https://www.mdpi.com/2227-7390/8/7/1074fixed-point theoremNewton’s methodNewtonian operatorglobal convergenceconvergence ballFredholm integral equation
spellingShingle José A. Ezquerro
Miguel A. Hernández-Verón
The Newtonian Operator and Global Convergence Balls for Newton’s Method
Mathematics
fixed-point theorem
Newton’s method
Newtonian operator
global convergence
convergence ball
Fredholm integral equation
title The Newtonian Operator and Global Convergence Balls for Newton’s Method
title_full The Newtonian Operator and Global Convergence Balls for Newton’s Method
title_fullStr The Newtonian Operator and Global Convergence Balls for Newton’s Method
title_full_unstemmed The Newtonian Operator and Global Convergence Balls for Newton’s Method
title_short The Newtonian Operator and Global Convergence Balls for Newton’s Method
title_sort newtonian operator and global convergence balls for newton s method
topic fixed-point theorem
Newton’s method
Newtonian operator
global convergence
convergence ball
Fredholm integral equation
url https://www.mdpi.com/2227-7390/8/7/1074
work_keys_str_mv AT joseaezquerro thenewtonianoperatorandglobalconvergenceballsfornewtonsmethod
AT miguelahernandezveron thenewtonianoperatorandglobalconvergenceballsfornewtonsmethod
AT joseaezquerro newtonianoperatorandglobalconvergenceballsfornewtonsmethod
AT miguelahernandezveron newtonianoperatorandglobalconvergenceballsfornewtonsmethod