A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons
Materials science is beginning to adopt computational simulation to eliminate laboratory trial and error campaigns—much like the pharmaceutical industry of 40 years ago. To further computational materials discovery, new methodology must be developed that enables rapid and accurate testing on accessi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/12/4/926 |
_version_ | 1797570400951992320 |
---|---|
author | Matthew A. Bone Terence Macquart Ian Hamerton Brendan J. Howlin |
author_facet | Matthew A. Bone Terence Macquart Ian Hamerton Brendan J. Howlin |
author_sort | Matthew A. Bone |
collection | DOAJ |
description | Materials science is beginning to adopt computational simulation to eliminate laboratory trial and error campaigns—much like the pharmaceutical industry of 40 years ago. To further computational materials discovery, new methodology must be developed that enables rapid and accurate testing on accessible computational hardware. To this end, the authors utilise a novel methodology concept of intermediate molecules as a starting point, for which they propose the term ‘symthon’ (The term ‘Symthon’ is being used as a simulation equivalent of the synthon, popularised by Dr Stuart Warren in ‘Organic Synthesis: The Disconnection Approach’, OUP: Oxford, 1983.) rather than conventional monomers. The use of symthons eliminates the initial monomer bonding phase, reducing the number of iterations required in the simulation, thereby reducing the runtime. A novel approach to molecular dynamics, with an NVT (Canonical) ensemble and variable unit cell geometry, was used to generate structures with differing physical and thermal properties. Additional script methods were designed and tested, which enabled a high degree of cure in all sampled structures. This simulation has been trialled on large-scale atomistic models of phenolic resins, based on a range of stoichiometric ratios of formaldehyde and phenol. Density and glass transition temperature values were produced, and found to be in good agreement with empirical data and other simulated values in the literature. The runtime of the simulation was a key consideration in script design; cured models can be produced in under 24 h on modest hardware. The use of symthons has been shown as a viable methodology to reduce simulation runtime whilst generating accurate models. |
first_indexed | 2024-03-10T20:25:05Z |
format | Article |
id | doaj.art-5f5a20fd1ee04cbea7f56af4bc7309e8 |
institution | Directory Open Access Journal |
issn | 2073-4360 |
language | English |
last_indexed | 2024-03-10T20:25:05Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Polymers |
spelling | doaj.art-5f5a20fd1ee04cbea7f56af4bc7309e82023-11-19T21:52:01ZengMDPI AGPolymers2073-43602020-04-0112492610.3390/polym12040926A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using SymthonsMatthew A. Bone0Terence Macquart1Ian Hamerton2Brendan J. Howlin3Department of Chemistry & Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UKBristol Composites Institute (ACCIS), Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UKBristol Composites Institute (ACCIS), Department of Aerospace Engineering, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UKDepartment of Chemistry & Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UKMaterials science is beginning to adopt computational simulation to eliminate laboratory trial and error campaigns—much like the pharmaceutical industry of 40 years ago. To further computational materials discovery, new methodology must be developed that enables rapid and accurate testing on accessible computational hardware. To this end, the authors utilise a novel methodology concept of intermediate molecules as a starting point, for which they propose the term ‘symthon’ (The term ‘Symthon’ is being used as a simulation equivalent of the synthon, popularised by Dr Stuart Warren in ‘Organic Synthesis: The Disconnection Approach’, OUP: Oxford, 1983.) rather than conventional monomers. The use of symthons eliminates the initial monomer bonding phase, reducing the number of iterations required in the simulation, thereby reducing the runtime. A novel approach to molecular dynamics, with an NVT (Canonical) ensemble and variable unit cell geometry, was used to generate structures with differing physical and thermal properties. Additional script methods were designed and tested, which enabled a high degree of cure in all sampled structures. This simulation has been trialled on large-scale atomistic models of phenolic resins, based on a range of stoichiometric ratios of formaldehyde and phenol. Density and glass transition temperature values were produced, and found to be in good agreement with empirical data and other simulated values in the literature. The runtime of the simulation was a key consideration in script design; cured models can be produced in under 24 h on modest hardware. The use of symthons has been shown as a viable methodology to reduce simulation runtime whilst generating accurate models.https://www.mdpi.com/2073-4360/12/4/926material simulationmolecular dynamicsintermediate structuresphenolic resinscharacterisationsymthons |
spellingShingle | Matthew A. Bone Terence Macquart Ian Hamerton Brendan J. Howlin A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons Polymers material simulation molecular dynamics intermediate structures phenolic resins characterisation symthons |
title | A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons |
title_full | A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons |
title_fullStr | A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons |
title_full_unstemmed | A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons |
title_short | A Novel Approach to Atomistic Molecular Dynamics Simulation of Phenolic Resins Using Symthons |
title_sort | novel approach to atomistic molecular dynamics simulation of phenolic resins using symthons |
topic | material simulation molecular dynamics intermediate structures phenolic resins characterisation symthons |
url | https://www.mdpi.com/2073-4360/12/4/926 |
work_keys_str_mv | AT matthewabone anovelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT terencemacquart anovelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT ianhamerton anovelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT brendanjhowlin anovelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT matthewabone novelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT terencemacquart novelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT ianhamerton novelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons AT brendanjhowlin novelapproachtoatomisticmoleculardynamicssimulationofphenolicresinsusingsymthons |