Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system

In this paper, we study a class of Schrödinger–Bopp–Podolsky system. Under some suitable assumptions for the potentials, by developing some calculations of sharp energy estimates and using a topological argument involving the barycenter function, we establish the existence of positive bound state so...

Full description

Bibliographic Details
Main Authors: Kaimin Teng, Yunxia Yan
Format: Article
Language:English
Published: University of Szeged 2021-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8581
_version_ 1797830509404880896
author Kaimin Teng
Yunxia Yan
author_facet Kaimin Teng
Yunxia Yan
author_sort Kaimin Teng
collection DOAJ
description In this paper, we study a class of Schrödinger–Bopp–Podolsky system. Under some suitable assumptions for the potentials, by developing some calculations of sharp energy estimates and using a topological argument involving the barycenter function, we establish the existence of positive bound state solution.
first_indexed 2024-04-09T13:37:16Z
format Article
id doaj.art-5f601207794c4710916c44ce1996f7d8
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:16Z
publishDate 2021-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-5f601207794c4710916c44ce1996f7d82023-05-09T07:53:10ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-01-012021411910.14232/ejqtde.2021.1.48581Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky systemKaimin Teng0Yunxia Yan1Taiyuan University of Technology, Taiyuan, P.R. ChinaTaiyuan University of Technology, Taiyuan, P.R. ChinaIn this paper, we study a class of Schrödinger–Bopp–Podolsky system. Under some suitable assumptions for the potentials, by developing some calculations of sharp energy estimates and using a topological argument involving the barycenter function, we establish the existence of positive bound state solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8581schrödinger–bopp–podolsky systemvariational approachcompeting potentialsbound state solution
spellingShingle Kaimin Teng
Yunxia Yan
Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system
Electronic Journal of Qualitative Theory of Differential Equations
schrödinger–bopp–podolsky system
variational approach
competing potentials
bound state solution
title Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system
title_full Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system
title_fullStr Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system
title_full_unstemmed Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system
title_short Existence of positive bound state solution for the nonlinear Schrödinger–Bopp–Podolsky system
title_sort existence of positive bound state solution for the nonlinear schrodinger bopp podolsky system
topic schrödinger–bopp–podolsky system
variational approach
competing potentials
bound state solution
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8581
work_keys_str_mv AT kaiminteng existenceofpositiveboundstatesolutionforthenonlinearschrodingerbopppodolskysystem
AT yunxiayan existenceofpositiveboundstatesolutionforthenonlinearschrodingerbopppodolskysystem