Resting EEG Asymmetry Markers of Multiple Facets of the Behavioral Approach System: A LORETA Analysis

Previously published models of frontal activity linked high relative left frontal activity to the behavioral approach system (BAS) and impulsivity. Additionally, these models did not account for BAS facets encompassing the anticipation of reward, i.e., goal-driven persistence (BAS–GDP) and reward in...

Full description

Bibliographic Details
Main Authors: Vilfredo De Pascalis, Giuliana Cirillo, Arianna Vecchio
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/11/1794
Description
Summary:Previously published models of frontal activity linked high relative left frontal activity to the behavioral approach system (BAS) and impulsivity. Additionally, these models did not account for BAS facets encompassing the anticipation of reward, i.e., goal-driven persistence (BAS–GDP) and reward interest (BAS–RI), from those that deal with the actual hedonic experience of reward, i.e., reward reactivity (BAS–RR) and impulsivity (BAS–I). Using resting electroencephalographic (EEG) recordings, the source localization (LORETA) method allowed us to calculate the hemispheric asymmetry of the current density within the alpha band (7.5–13 Hz) in ten regions of interest. Compared to low BAS subtrait scorers, high BAS subtrait scorers (except for BAS–I) were correlated with greater relative left-sided activity in the superior frontal gyrus (BA10). Further, an isolated effective coherence (iCOH) analysis of the beta activity (21 Hz) disclosed that high impulsive scorers as compared to low impulsive ones had higher connectivity between the superior frontal gyrus and middle temporal gyrus, which was not compensated for by enhanced inhibitory alpha (11 Hz) connectivity between these regions. For the beta frequency, we also found in highly impulsive individuals that (i) both left and right middle temporal lobes directly influenced the activity of the left and right superior frontal lobes, and (ii) a clear decoupling between left and right superior frontal lobes. These findings could indicate reduced control by the supervisory system in more impulsive individuals.
ISSN:2073-8994