The Use of a Uniform Technique for Harmonization and Generalization in Assessing the Flood Discharge Frequencies of Long Return Period Floods in the Danube River Basin

The flow regime conditions of the Danube River are continually changing. These changes are the result of natural processes and anthropogenic activities. The territory of the Danube River Basin is one of the most flood-endangered regions in Europe and assessing the design discharges along the Danube...

Full description

Bibliographic Details
Main Authors: Veronika Bačová Mitková, Pavla Pekárová, Dana Halmová, Pavol Miklánek
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/10/1337
Description
Summary:The flow regime conditions of the Danube River are continually changing. These changes are the result of natural processes and anthropogenic activities. The territory of the Danube River Basin is one of the most flood-endangered regions in Europe and assessing the design discharges along the Danube channel is complicated by the different estimation methods that are applied in particular countries. For this reason, it is necessary to harmonize flood design value assessment methods. The long-term maximum annual discharge series of the Danube River and other rivers in the Danube basin were analyzed and used to estimate the flood design values. We used the Log-Pearson type III distribution, which is one of the most widely used theoretical probability distributions to estimate extremes. This distribution can be flexibly applied to extreme values depending on the skew coefficient. We also analyzed the effect of the inclusion and exclusion of the historical extremes in the processed dataset. The results show that the inclusion of historical floods and the regionalization of the Log-Pearson type III distribution skew parameter can change the design discharges.
ISSN:2073-4441