Kinetic drop friction

Abstract Liquid drops sliding on tilted surfaces is an everyday phenomenon and is important for many industrial applications. Still, it is impossible to predict the drop’s sliding velocity. To make a step forward in quantitative understanding, we measured the velocity  $$(U)$$ ( U ) , contact width ...

Full description

Bibliographic Details
Main Authors: Xiaomei Li, Francisco Bodziony, Mariana Yin, Holger Marschall, Rüdiger Berger, Hans-Jürgen Butt
Format: Article
Language:English
Published: Nature Portfolio 2023-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-40289-8
_version_ 1797769434792722432
author Xiaomei Li
Francisco Bodziony
Mariana Yin
Holger Marschall
Rüdiger Berger
Hans-Jürgen Butt
author_facet Xiaomei Li
Francisco Bodziony
Mariana Yin
Holger Marschall
Rüdiger Berger
Hans-Jürgen Butt
author_sort Xiaomei Li
collection DOAJ
description Abstract Liquid drops sliding on tilted surfaces is an everyday phenomenon and is important for many industrial applications. Still, it is impossible to predict the drop’s sliding velocity. To make a step forward in quantitative understanding, we measured the velocity  $$(U)$$ ( U ) , contact width  $$(w)$$ ( w ) , contact length $$(L)$$ ( L ) , advancing  $$({\theta }_{{{{{{\rm{a}}}}}}})$$ ( θ a ) , and receding contact angle $$({\theta }_{{{{{{\rm{r}}}}}}})$$ ( θ r ) of liquid drops sliding down inclined flat surfaces made of different materials. We find the friction force acting on sliding drops of polar and non-polar liquids with viscosities ( $${\eta }$$ η ) ranging from 10−3 to 1 $${{{{{\rm{Pa}}}}}}\cdot {{{{{\rm{s}}}}}}$$ Pa ⋅ s can empirically be described by $${F}_{{{{{{\rm{f}}}}}}}(U)={F}_{0}+\beta w\eta U$$ F f ( U ) = F 0 + β w η U for a velocity range up to 0.7 ms−1. The dimensionless friction coefficient $$(\beta )$$ ( β ) defined here varies from 20 to 200. It is a material parameter, specific for a liquid/surface combination. While static wetting is fully described by $${\theta }_{{{{{{\rm{a}}}}}}}$$ θ a and $${\theta }_{{{{{{\rm{r}}}}}}}$$ θ r , for dynamic wetting the friction coefficient is additionally necessary.
first_indexed 2024-03-12T21:07:59Z
format Article
id doaj.art-5f73126d234b4e71a492fbb955571a12
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-12T21:07:59Z
publishDate 2023-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-5f73126d234b4e71a492fbb955571a122023-07-30T11:20:15ZengNature PortfolioNature Communications2041-17232023-07-0114111010.1038/s41467-023-40289-8Kinetic drop frictionXiaomei Li0Francisco Bodziony1Mariana Yin2Holger Marschall3Rüdiger Berger4Hans-Jürgen Butt5Max Planck Institute for Polymer ResearchComputational Multiphase Flows, Technische Universität DarmstadtComputational Multiphase Flows, Technische Universität DarmstadtComputational Multiphase Flows, Technische Universität DarmstadtMax Planck Institute for Polymer ResearchMax Planck Institute for Polymer ResearchAbstract Liquid drops sliding on tilted surfaces is an everyday phenomenon and is important for many industrial applications. Still, it is impossible to predict the drop’s sliding velocity. To make a step forward in quantitative understanding, we measured the velocity  $$(U)$$ ( U ) , contact width  $$(w)$$ ( w ) , contact length $$(L)$$ ( L ) , advancing  $$({\theta }_{{{{{{\rm{a}}}}}}})$$ ( θ a ) , and receding contact angle $$({\theta }_{{{{{{\rm{r}}}}}}})$$ ( θ r ) of liquid drops sliding down inclined flat surfaces made of different materials. We find the friction force acting on sliding drops of polar and non-polar liquids with viscosities ( $${\eta }$$ η ) ranging from 10−3 to 1 $${{{{{\rm{Pa}}}}}}\cdot {{{{{\rm{s}}}}}}$$ Pa ⋅ s can empirically be described by $${F}_{{{{{{\rm{f}}}}}}}(U)={F}_{0}+\beta w\eta U$$ F f ( U ) = F 0 + β w η U for a velocity range up to 0.7 ms−1. The dimensionless friction coefficient $$(\beta )$$ ( β ) defined here varies from 20 to 200. It is a material parameter, specific for a liquid/surface combination. While static wetting is fully described by $${\theta }_{{{{{{\rm{a}}}}}}}$$ θ a and $${\theta }_{{{{{{\rm{r}}}}}}}$$ θ r , for dynamic wetting the friction coefficient is additionally necessary.https://doi.org/10.1038/s41467-023-40289-8
spellingShingle Xiaomei Li
Francisco Bodziony
Mariana Yin
Holger Marschall
Rüdiger Berger
Hans-Jürgen Butt
Kinetic drop friction
Nature Communications
title Kinetic drop friction
title_full Kinetic drop friction
title_fullStr Kinetic drop friction
title_full_unstemmed Kinetic drop friction
title_short Kinetic drop friction
title_sort kinetic drop friction
url https://doi.org/10.1038/s41467-023-40289-8
work_keys_str_mv AT xiaomeili kineticdropfriction
AT franciscobodziony kineticdropfriction
AT marianayin kineticdropfriction
AT holgermarschall kineticdropfriction
AT rudigerberger kineticdropfriction
AT hansjurgenbutt kineticdropfriction