Multiport Driving Topology for a Photovoltaic Aircraft Light Transmission System Driven by Switched Reluctance Motors

In order to meet the working requirements of high performance and low cost for a photovoltaic (PV) aircraft driven by switched reluctance motors (SRMs), a multiport driving topology (MDT) is proposed. The converter is composed of an asymmetric half-bridge and a multiport power source circuit. Three...

Full description

Bibliographic Details
Main Authors: Xiaoshu Zan, Wenyuan Zhang, Kai Ni, Zhikai Jiang, Yi Gong
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/14/3687
Description
Summary:In order to meet the working requirements of high performance and low cost for a photovoltaic (PV) aircraft driven by switched reluctance motors (SRMs), a multiport driving topology (MDT) is proposed. The converter is composed of an asymmetric half-bridge and a multiport power source circuit. Three driving and two charging modes can be realized through simple control of the switches. The output torque and the efficiency of the system are improved, because the excitation and demagnetization processes are accelerated by increasing the commutation voltage. The battery pack can be self-charged when the system is running, and PV panels can be used to charge the battery pack to reduce energy consumption when the system is stationary. The simulation analysis and the experimental verification on an 8/6 SRM confirm the effectiveness of the MFT proposed in this paper.
ISSN:1996-1073