Summary: | In a networked control system scenario, the packet dropout is usually modeled by a time-invariant (homogeneous) Markov chain (MC) process. However, from a practical point of view, the probabilities of packet loss can vary in time and/or probability parameter dependency. Therefore, to design a fault detection filter (FDF) implemented in a semi-reliable communication network, it is important to consider the variation in time of the network parameters, by assuming the more accurate scenario provided by a nonhomogeneous jump system. Such a premise can be properly taken into account within the linear parameter varying (LPV) framework. In this sense, this paper proposes a new design method of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">H</mi><mo>∞</mo></msub></semantics></math></inline-formula> gain-scheduled FDF for Markov jump linear systems under the assumption of a nonhomogeneous MC. To illustrate the applicability of the theoretical solution, a numerical simulation is presented.
|