Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain

In a networked control system scenario, the packet dropout is usually modeled by a time-invariant (homogeneous) Markov chain (MC) process. However, from a practical point of view, the probabilities of packet loss can vary in time and/or probability parameter dependency. Therefore, to design a fault...

Full description

Bibliographic Details
Main Authors: Leonardo Carvalho, Jonathan M. Palma, Cecília F. Morais, Bayu Jayawardhana, Oswaldo L. V. Costa
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/7/1713
_version_ 1827746744493932544
author Leonardo Carvalho
Jonathan M. Palma
Cecília F. Morais
Bayu Jayawardhana
Oswaldo L. V. Costa
author_facet Leonardo Carvalho
Jonathan M. Palma
Cecília F. Morais
Bayu Jayawardhana
Oswaldo L. V. Costa
author_sort Leonardo Carvalho
collection DOAJ
description In a networked control system scenario, the packet dropout is usually modeled by a time-invariant (homogeneous) Markov chain (MC) process. However, from a practical point of view, the probabilities of packet loss can vary in time and/or probability parameter dependency. Therefore, to design a fault detection filter (FDF) implemented in a semi-reliable communication network, it is important to consider the variation in time of the network parameters, by assuming the more accurate scenario provided by a nonhomogeneous jump system. Such a premise can be properly taken into account within the linear parameter varying (LPV) framework. In this sense, this paper proposes a new design method of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">H</mi><mo>∞</mo></msub></semantics></math></inline-formula> gain-scheduled FDF for Markov jump linear systems under the assumption of a nonhomogeneous MC. To illustrate the applicability of the theoretical solution, a numerical simulation is presented.
first_indexed 2024-03-11T05:30:39Z
format Article
id doaj.art-5f79a80d2d544318adfa493cc401f2f1
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T05:30:39Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-5f79a80d2d544318adfa493cc401f2f12023-11-17T17:09:38ZengMDPI AGMathematics2227-73902023-04-01117171310.3390/math11071713Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov ChainLeonardo Carvalho0Jonathan M. Palma1Cecília F. Morais2Bayu Jayawardhana3Oswaldo L. V. Costa4Departamento de Engenharia de Telecomunicacções e Controle, Escola Politécnica na Universidade de São Paulo, São Paulo 05508-010, SP, BrazilFacultad de Ingeniería, Universidad de Talca, Curico 3340000, Maule, ChilePontifical Catholic University of Campinas (PUC-Campinas), Center for Exact, Environmental and Technological Sciences (CEATEC), Postgraduate Program in Telecommunication Networks Management, Campinas 13086-900, SP, BrazilEngineering and Technology Institute Groningen, Faculty of Science and Engineering, Rijksuniversiteit Groningen, 9747 AG Groningen, The NetherlandsDepartamento de Engenharia de Telecomunicacções e Controle, Escola Politécnica na Universidade de São Paulo, São Paulo 05508-010, SP, BrazilIn a networked control system scenario, the packet dropout is usually modeled by a time-invariant (homogeneous) Markov chain (MC) process. However, from a practical point of view, the probabilities of packet loss can vary in time and/or probability parameter dependency. Therefore, to design a fault detection filter (FDF) implemented in a semi-reliable communication network, it is important to consider the variation in time of the network parameters, by assuming the more accurate scenario provided by a nonhomogeneous jump system. Such a premise can be properly taken into account within the linear parameter varying (LPV) framework. In this sense, this paper proposes a new design method of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">H</mi><mo>∞</mo></msub></semantics></math></inline-formula> gain-scheduled FDF for Markov jump linear systems under the assumption of a nonhomogeneous MC. To illustrate the applicability of the theoretical solution, a numerical simulation is presented.https://www.mdpi.com/2227-7390/11/7/1713fault-detection filterMarkovian jump linear system<named-content content-type="inline-formula"><inline-formula><mml:math id="mm1111"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mo>∞</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula></named-content> normLMI relaxationsnonhomogeneous Markov chains
spellingShingle Leonardo Carvalho
Jonathan M. Palma
Cecília F. Morais
Bayu Jayawardhana
Oswaldo L. V. Costa
Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain
Mathematics
fault-detection filter
Markovian jump linear system
<named-content content-type="inline-formula"><inline-formula><mml:math id="mm1111"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mo>∞</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula></named-content> norm
LMI relaxations
nonhomogeneous Markov chains
title Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain
title_full Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain
title_fullStr Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain
title_full_unstemmed Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain
title_short Gain Scheduled Fault Detection Filter for Markovian Jump Linear System with Nonhomogeneous Markov Chain
title_sort gain scheduled fault detection filter for markovian jump linear system with nonhomogeneous markov chain
topic fault-detection filter
Markovian jump linear system
<named-content content-type="inline-formula"><inline-formula><mml:math id="mm1111"><mml:semantics><mml:msub><mml:mi mathvariant="script">H</mml:mi><mml:mo>∞</mml:mo></mml:msub></mml:semantics></mml:math></inline-formula></named-content> norm
LMI relaxations
nonhomogeneous Markov chains
url https://www.mdpi.com/2227-7390/11/7/1713
work_keys_str_mv AT leonardocarvalho gainscheduledfaultdetectionfilterformarkovianjumplinearsystemwithnonhomogeneousmarkovchain
AT jonathanmpalma gainscheduledfaultdetectionfilterformarkovianjumplinearsystemwithnonhomogeneousmarkovchain
AT ceciliafmorais gainscheduledfaultdetectionfilterformarkovianjumplinearsystemwithnonhomogeneousmarkovchain
AT bayujayawardhana gainscheduledfaultdetectionfilterformarkovianjumplinearsystemwithnonhomogeneousmarkovchain
AT oswaldolvcosta gainscheduledfaultdetectionfilterformarkovianjumplinearsystemwithnonhomogeneousmarkovchain