A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases

We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases of the irreducible $ \mathfrak {S}_{2n} $ -representation i...

Full description

Bibliographic Details
Main Authors: Byung-Hak Hwang, Jihyeug Jang, Jaeseong Oh
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509423000798/type/journal_article
_version_ 1797680490479616000
author Byung-Hak Hwang
Jihyeug Jang
Jaeseong Oh
author_facet Byung-Hak Hwang
Jihyeug Jang
Jaeseong Oh
author_sort Byung-Hak Hwang
collection DOAJ
description We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases of the irreducible $ \mathfrak {S}_{2n} $ -representation indexed by $ (n,n) $ , which answers Rhoades’s question. Furthermore, we study enumerative properties of these permutations.
first_indexed 2024-03-11T23:30:47Z
format Article
id doaj.art-5f8569eab10d4021b48c208f665c58f1
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-03-11T23:30:47Z
publishDate 2023-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-5f8569eab10d4021b48c208f665c58f12023-09-20T09:14:55ZengCambridge University PressForum of Mathematics, Sigma2050-50942023-01-011110.1017/fms.2023.79A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web basesByung-Hak Hwang0Jihyeug Jang1Jaeseong Oh2https://orcid.org/0000-0002-6110-2188Anyang, South Korea; E-mail:Department of Mathematics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea; E-mail:Yonsei Mathematical Sciences and Computation, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea; E-mail:We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases of the irreducible $ \mathfrak {S}_{2n} $ -representation indexed by $ (n,n) $ , which answers Rhoades’s question. Furthermore, we study enumerative properties of these permutations.https://www.cambridge.org/core/product/identifier/S2050509423000798/type/journal_article05E1005A1520C30
spellingShingle Byung-Hak Hwang
Jihyeug Jang
Jaeseong Oh
A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases
Forum of Mathematics, Sigma
05E10
05A15
20C30
title A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases
title_full A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases
title_fullStr A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases
title_full_unstemmed A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases
title_short A combinatorial model for the transition matrix between the Specht and $\operatorname {SL}_2$ -web bases
title_sort combinatorial model for the transition matrix between the specht and operatorname sl 2 web bases
topic 05E10
05A15
20C30
url https://www.cambridge.org/core/product/identifier/S2050509423000798/type/journal_article
work_keys_str_mv AT byunghakhwang acombinatorialmodelforthetransitionmatrixbetweenthespechtandoperatornamesl2webbases
AT jihyeugjang acombinatorialmodelforthetransitionmatrixbetweenthespechtandoperatornamesl2webbases
AT jaeseongoh acombinatorialmodelforthetransitionmatrixbetweenthespechtandoperatornamesl2webbases
AT byunghakhwang combinatorialmodelforthetransitionmatrixbetweenthespechtandoperatornamesl2webbases
AT jihyeugjang combinatorialmodelforthetransitionmatrixbetweenthespechtandoperatornamesl2webbases
AT jaeseongoh combinatorialmodelforthetransitionmatrixbetweenthespechtandoperatornamesl2webbases