Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung

Globally, the number one cause of death each year is cardiovascular disease. Cardiovascular disease is a disease caused by impaired function of the heart and blood vessels, such as coronary heart disease, heart failure or heart failure, hypertension and stroke. The purpose of this study was to measu...

Full description

Bibliographic Details
Main Authors: Huzain Azis, Purnawansyah Purnawansyah, Farniwati Fattah, Inggrianti Pratiwi Putri
Format: Article
Language:English
Published: Fakultas Ilmu Komputer UMI 2020-08-01
Series:Ilkom Jurnal Ilmiah
Subjects:
Online Access:http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/507
_version_ 1818718364098363392
author Huzain Azis
Purnawansyah Purnawansyah
Farniwati Fattah
Inggrianti Pratiwi Putri
author_facet Huzain Azis
Purnawansyah Purnawansyah
Farniwati Fattah
Inggrianti Pratiwi Putri
author_sort Huzain Azis
collection DOAJ
description Globally, the number one cause of death each year is cardiovascular disease. Cardiovascular disease is a disease caused by impaired function of the heart and blood vessels, such as coronary heart disease, heart failure or heart failure, hypertension and stroke. The purpose of this study was to measure the performance of accuracy, precision, recall and f-measure of the K-NN and Crossvalidation methods on a dataset of cardiovascular patients. The dataset used was 1000 records consisting of 11 attributes (age, gender, height, etc.) cardiovascular and non cardiovascular patient data, the dataset was obtained from the UCI Machine Learning Repository managed by the Hungarian Institute of Cardiology Budapest: Andras Janosi, MD, University Hospital, Zurich, Switzerland. The steps taken are: dividing the simulation ratio of the dataset to 20:80, 50:50 and 80:20, applying crossvalidation (k-fold = 10) and classification using the K-NN method (k = 2 to K = 900). The research results from the simulation of the dataset ratio 50:50 obtained an accuracy value of 82%, 82% precision, 82% recall and 80% f-measure at a value of K = 13, then the research results from the simulation of the dataset ratio 20:80 obtained an accuracy value of 87%, 87% precision, 97% recall and 92% f-measure at the value of K = 3, and the results of research from the simulation of the dataset ratio 80:20 obtained an accuracy value of 91%, 92% precision, 60% recall and 72% f-measure at the value K = 5.
first_indexed 2024-12-17T19:49:52Z
format Article
id doaj.art-5f85c97548ee4aad8fbc3d75dfa2a9fd
institution Directory Open Access Journal
issn 2087-1716
2548-7779
language English
last_indexed 2024-12-17T19:49:52Z
publishDate 2020-08-01
publisher Fakultas Ilmu Komputer UMI
record_format Article
series Ilkom Jurnal Ilmiah
spelling doaj.art-5f85c97548ee4aad8fbc3d75dfa2a9fd2022-12-21T21:34:45ZengFakultas Ilmu Komputer UMIIlkom Jurnal Ilmiah2087-17162548-77792020-08-01122818610.33096/ilkom.v12i2.507.81-86203Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit JantungHuzain Azis0Purnawansyah Purnawansyah1Farniwati Fattah2Inggrianti Pratiwi Putri3Universitas Muslim IndonesiaUniversitas Muslim IndonesiaUniversitas Muslim IndonesiaUniversitas Muslim IndonesiaGlobally, the number one cause of death each year is cardiovascular disease. Cardiovascular disease is a disease caused by impaired function of the heart and blood vessels, such as coronary heart disease, heart failure or heart failure, hypertension and stroke. The purpose of this study was to measure the performance of accuracy, precision, recall and f-measure of the K-NN and Crossvalidation methods on a dataset of cardiovascular patients. The dataset used was 1000 records consisting of 11 attributes (age, gender, height, etc.) cardiovascular and non cardiovascular patient data, the dataset was obtained from the UCI Machine Learning Repository managed by the Hungarian Institute of Cardiology Budapest: Andras Janosi, MD, University Hospital, Zurich, Switzerland. The steps taken are: dividing the simulation ratio of the dataset to 20:80, 50:50 and 80:20, applying crossvalidation (k-fold = 10) and classification using the K-NN method (k = 2 to K = 900). The research results from the simulation of the dataset ratio 50:50 obtained an accuracy value of 82%, 82% precision, 82% recall and 80% f-measure at a value of K = 13, then the research results from the simulation of the dataset ratio 20:80 obtained an accuracy value of 87%, 87% precision, 97% recall and 92% f-measure at the value of K = 3, and the results of research from the simulation of the dataset ratio 80:20 obtained an accuracy value of 91%, 92% precision, 60% recall and 72% f-measure at the value K = 5.http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/507k-nearest neighborcrossvalidationanalisis performapenyakit cardiovascular
spellingShingle Huzain Azis
Purnawansyah Purnawansyah
Farniwati Fattah
Inggrianti Pratiwi Putri
Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung
Ilkom Jurnal Ilmiah
k-nearest neighbor
crossvalidation
analisis performa
penyakit cardiovascular
title Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung
title_full Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung
title_fullStr Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung
title_full_unstemmed Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung
title_short Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung
title_sort performa klasifikasi k nn dan cross validation pada data pasien pengidap penyakit jantung
topic k-nearest neighbor
crossvalidation
analisis performa
penyakit cardiovascular
url http://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/507
work_keys_str_mv AT huzainazis performaklasifikasiknndancrossvalidationpadadatapasienpengidappenyakitjantung
AT purnawansyahpurnawansyah performaklasifikasiknndancrossvalidationpadadatapasienpengidappenyakitjantung
AT farniwatifattah performaklasifikasiknndancrossvalidationpadadatapasienpengidappenyakitjantung
AT inggriantipratiwiputri performaklasifikasiknndancrossvalidationpadadatapasienpengidappenyakitjantung