Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics

The commercial category of virgin olive oil is currently assigned on the basis of chemical-physical and sensory parameters following official methods. Considering the limited number of samples that can be analysed daily by a sensory panel, an instrumental screening tool could be supportive by reduci...

Full description

Bibliographic Details
Main Authors: Beatriz Quintanilla-Casas, Marco Marin, Francesc Guardiola, Diego Luis García-González, Sara Barbieri, Alessandra Bendini, Tullia Gallina Toschi, Stefania Vichi, Alba Tres
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/9/10/1509
_version_ 1797550313664675840
author Beatriz Quintanilla-Casas
Marco Marin
Francesc Guardiola
Diego Luis García-González
Sara Barbieri
Alessandra Bendini
Tullia Gallina Toschi
Stefania Vichi
Alba Tres
author_facet Beatriz Quintanilla-Casas
Marco Marin
Francesc Guardiola
Diego Luis García-González
Sara Barbieri
Alessandra Bendini
Tullia Gallina Toschi
Stefania Vichi
Alba Tres
author_sort Beatriz Quintanilla-Casas
collection DOAJ
description The commercial category of virgin olive oil is currently assigned on the basis of chemical-physical and sensory parameters following official methods. Considering the limited number of samples that can be analysed daily by a sensory panel, an instrumental screening tool could be supportive by reducing the assessors’ workload and improving their performance. The present work aims to in-house validate a screening strategy consisting of two sequential binary partial least squares-discriminant analysis (PLS-DA) models that was suggested to be successful in a proof-of-concept study. This approach is based on the volatile fraction fingerprint obtained by HS-SPME–GC–MS from more than 300 virgin olive oils from two crop seasons graded by six different sensory panels into extra virgin, virgin or lampante categories. Uncertainty ranges were set for the binary classification models according to sensitivity and specificity by means of receiver operating characteristics (ROC) curves, aiming to identify boundary samples. Thereby, performing the screening approach, only the virgin olive oils classified as uncertain (23.3%) would be assessed by a sensory panel, while the rest would be directly classified into a given commercial category (78.9% of correct classification). The sensory panel’s workload would be reduced to less than one-third of the samples. A highly reliable classification of samples would be achieved (84.0%) by combining the proposed screening tool with the reference method (panel test) for the assessment of uncertain samples.
first_indexed 2024-03-10T15:27:31Z
format Article
id doaj.art-5f8ae1ea556546bb89b42e906ce3ec00
institution Directory Open Access Journal
issn 2304-8158
language English
last_indexed 2024-03-10T15:27:31Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Foods
spelling doaj.art-5f8ae1ea556546bb89b42e906ce3ec002023-11-20T17:53:53ZengMDPI AGFoods2304-81582020-10-01910150910.3390/foods9101509Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and ChemometricsBeatriz Quintanilla-Casas0Marco Marin1Francesc Guardiola2Diego Luis García-González3Sara Barbieri4Alessandra Bendini5Tullia Gallina Toschi6Stefania Vichi7Alba Tres8Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, 08921 Santa Coloma de Gramenet, SpainDepartament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, 08921 Santa Coloma de Gramenet, SpainDepartament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, 08921 Santa Coloma de Gramenet, SpainInstituto de la Grasa (CSIC), 41013 Sevilla, SpainDepartment of Agricultural and Food Science, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, ItalyDepartment of Agricultural and Food Science, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, ItalyDepartment of Agricultural and Food Science, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, ItalyDepartament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, 08921 Santa Coloma de Gramenet, SpainDepartament de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus de l’Alimentació de Torribera, Facultat de Farmacia i Ciències de l’Alimentació, Universitat de Barcelona, 08921 Santa Coloma de Gramenet, SpainThe commercial category of virgin olive oil is currently assigned on the basis of chemical-physical and sensory parameters following official methods. Considering the limited number of samples that can be analysed daily by a sensory panel, an instrumental screening tool could be supportive by reducing the assessors’ workload and improving their performance. The present work aims to in-house validate a screening strategy consisting of two sequential binary partial least squares-discriminant analysis (PLS-DA) models that was suggested to be successful in a proof-of-concept study. This approach is based on the volatile fraction fingerprint obtained by HS-SPME–GC–MS from more than 300 virgin olive oils from two crop seasons graded by six different sensory panels into extra virgin, virgin or lampante categories. Uncertainty ranges were set for the binary classification models according to sensitivity and specificity by means of receiver operating characteristics (ROC) curves, aiming to identify boundary samples. Thereby, performing the screening approach, only the virgin olive oils classified as uncertain (23.3%) would be assessed by a sensory panel, while the rest would be directly classified into a given commercial category (78.9% of correct classification). The sensory panel’s workload would be reduced to less than one-third of the samples. A highly reliable classification of samples would be achieved (84.0%) by combining the proposed screening tool with the reference method (panel test) for the assessment of uncertain samples.https://www.mdpi.com/2304-8158/9/10/1509virgin olive oilsensory qualityvolatile compoundsHS-SPME–GC–MSchemometricspanel test
spellingShingle Beatriz Quintanilla-Casas
Marco Marin
Francesc Guardiola
Diego Luis García-González
Sara Barbieri
Alessandra Bendini
Tullia Gallina Toschi
Stefania Vichi
Alba Tres
Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
Foods
virgin olive oil
sensory quality
volatile compounds
HS-SPME–GC–MS
chemometrics
panel test
title Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
title_full Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
title_fullStr Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
title_full_unstemmed Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
title_short Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
title_sort supporting the sensory panel to grade virgin olive oils an in house validated screening tool by volatile fingerprinting and chemometrics
topic virgin olive oil
sensory quality
volatile compounds
HS-SPME–GC–MS
chemometrics
panel test
url https://www.mdpi.com/2304-8158/9/10/1509
work_keys_str_mv AT beatrizquintanillacasas supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT marcomarin supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT francescguardiola supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT diegoluisgarciagonzalez supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT sarabarbieri supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT alessandrabendini supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT tulliagallinatoschi supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT stefaniavichi supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics
AT albatres supportingthesensorypaneltogradevirginoliveoilsaninhousevalidatedscreeningtoolbyvolatilefingerprintingandchemometrics