Non-Linear Observer Design with Laguerre Polynomials

In this paper, a methodology for a non-linear system state estimation is demonstrated, exploiting the input and parameter observability. For this purpose, the initial system is transformed into the canonical observability form, and the function that aggregates the non-linear dynamics of the system,...

Full description

Bibliographic Details
Main Authors: Maria Trigka, Elias Dritsas
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/7/913
_version_ 1797433594509000704
author Maria Trigka
Elias Dritsas
author_facet Maria Trigka
Elias Dritsas
author_sort Maria Trigka
collection DOAJ
description In this paper, a methodology for a non-linear system state estimation is demonstrated, exploiting the input and parameter observability. For this purpose, the initial system is transformed into the canonical observability form, and the function that aggregates the non-linear dynamics of the system, which may be unknown or difficult to be computed, is approximated by a linear combination of Laguerre polynomials. Hence, the system identification translates into the estimation of the parameters involved in the linear combination in order for the system to be observable. For the validation of the elaborated observer, we consider a biological model from the literature, investigating whether it is practically possible to infer its states, taking into account the new coordinates to design the appropriate observer of the system states. Through simulations, we investigate the parameter settings under which the new observer can identify the state of the system. More specifically, as the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increases, the system converges more quickly to the steady-state, decreasing the respective distance from the system’s initial state. As for the first state, the estimation error is in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><mn>15</mn></mrow></semantics></math></inline-formula>, and assuming <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>c</mi><mn>0</mn></msub><mo>=</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><msub><mi>c</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Under the same conditions, the estimation error of the system’s second state is in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, setting a performance difference of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> in relation to the first state. The outcomes show that the proposed observer’s performance can be further improved by selecting even higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>. Hence, the system is observable through the measurement output.
first_indexed 2024-03-09T10:19:13Z
format Article
id doaj.art-5f8e83a208a04c7bae8d28e6176e6d81
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T10:19:13Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-5f8e83a208a04c7bae8d28e6176e6d812023-12-01T22:06:41ZengMDPI AGEntropy1099-43002022-06-0124791310.3390/e24070913Non-Linear Observer Design with Laguerre PolynomialsMaria Trigka0Elias Dritsas1Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, GreeceDepartment of Computer Engineering and Informatics, University of Patras, 26504 Patras, GreeceIn this paper, a methodology for a non-linear system state estimation is demonstrated, exploiting the input and parameter observability. For this purpose, the initial system is transformed into the canonical observability form, and the function that aggregates the non-linear dynamics of the system, which may be unknown or difficult to be computed, is approximated by a linear combination of Laguerre polynomials. Hence, the system identification translates into the estimation of the parameters involved in the linear combination in order for the system to be observable. For the validation of the elaborated observer, we consider a biological model from the literature, investigating whether it is practically possible to infer its states, taking into account the new coordinates to design the appropriate observer of the system states. Through simulations, we investigate the parameter settings under which the new observer can identify the state of the system. More specifically, as the parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increases, the system converges more quickly to the steady-state, decreasing the respective distance from the system’s initial state. As for the first state, the estimation error is in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><mn>15</mn></mrow></semantics></math></inline-formula>, and assuming <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>c</mi><mn>0</mn></msub><mo>=</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mo>,</mo><msub><mi>c</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Under the same conditions, the estimation error of the system’s second state is in the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, setting a performance difference of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> in relation to the first state. The outcomes show that the proposed observer’s performance can be further improved by selecting even higher values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>. Hence, the system is observable through the measurement output.https://www.mdpi.com/1099-4300/24/7/913non-linear dynamicsidentifiabilityobservabilityLaguerre polynomial
spellingShingle Maria Trigka
Elias Dritsas
Non-Linear Observer Design with Laguerre Polynomials
Entropy
non-linear dynamics
identifiability
observability
Laguerre polynomial
title Non-Linear Observer Design with Laguerre Polynomials
title_full Non-Linear Observer Design with Laguerre Polynomials
title_fullStr Non-Linear Observer Design with Laguerre Polynomials
title_full_unstemmed Non-Linear Observer Design with Laguerre Polynomials
title_short Non-Linear Observer Design with Laguerre Polynomials
title_sort non linear observer design with laguerre polynomials
topic non-linear dynamics
identifiability
observability
Laguerre polynomial
url https://www.mdpi.com/1099-4300/24/7/913
work_keys_str_mv AT mariatrigka nonlinearobserverdesignwithlaguerrepolynomials
AT eliasdritsas nonlinearobserverdesignwithlaguerrepolynomials