Signal transduction interfaces for field-effect transistor-based biosensors

Abstract Biosensors based on field-effect transistors (FETs) are suitable for use in miniaturized and cost-effective healthcare devices. Various semiconductive materials can be applied as FET channels for biosensing, including one- and two-dimensional materials. The signal transduction interface bet...

Full description

Bibliographic Details
Main Author: Toshiya Sakata
Format: Article
Language:English
Published: Nature Portfolio 2024-02-01
Series:Communications Chemistry
Online Access:https://doi.org/10.1038/s42004-024-01121-6
Description
Summary:Abstract Biosensors based on field-effect transistors (FETs) are suitable for use in miniaturized and cost-effective healthcare devices. Various semiconductive materials can be applied as FET channels for biosensing, including one- and two-dimensional materials. The signal transduction interface between the biosample and the channel of FETs plays a key role in translating electrochemical reactions into output signals, thereby capturing target ions or biomolecules. In this Review, distinctive signal transduction interfaces for FET biosensors are introduced, categorized as chemically synthesized, physically structured, and biologically induced interfaces. The Review highlights that these signal transduction interfaces are key in controlling biosensing parameters, such as specificity, selectivity, binding constant, limit of detection, signal-to-noise ratio, and biocompatibility.
ISSN:2399-3669