Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films

Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST-0.5) thin films (600 nm) were deposited on single crystal MgO, SrTiO<sub>3</sub> (STO), and LaAlO<sub>3</sub> (LAO) substrates by pulsed laser deposition at an oxygen partial pressure of...

Full description

Bibliographic Details
Main Authors: Sandwip K. Dey, Sudheendran Kooriyattil, Shojan P. Pavunny, Ram S. Katiyar, Guru Subramanyam
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/8/852
_version_ 1797524236244353024
author Sandwip K. Dey
Sudheendran Kooriyattil
Shojan P. Pavunny
Ram S. Katiyar
Guru Subramanyam
author_facet Sandwip K. Dey
Sudheendran Kooriyattil
Shojan P. Pavunny
Ram S. Katiyar
Guru Subramanyam
author_sort Sandwip K. Dey
collection DOAJ
description Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST-0.5) thin films (600 nm) were deposited on single crystal MgO, SrTiO<sub>3</sub> (STO), and LaAlO<sub>3</sub> (LAO) substrates by pulsed laser deposition at an oxygen partial pressure of 80 mTorr and temperature of 720 °C. X-ray diffraction and in situ reflection high-energy electron diffraction routinely ascertained the epitaxial quality of the (100)-oriented nanocrystalline films. The broadband microwave (1–40 GHz) dielectric properties were measured using coplanar waveguide transmission line test structures. The out-of-plane relative permittivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>ε</mi><mo>⏊</mo><mo>/</mo></msubsup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> exhibited strong substrate-dependent dielectric (relaxation) dispersions with their attendant peaks in loss tangent (tanδ), with the former dropping sharply from tens of thousands to ~1000 by 10 GHz. Although homogeneous in-plane strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>ϵ</mi><mi>ǁ</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, enhances <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ε</mi><mo>⏊</mo><mo>/</mo></msubsup></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>ε</mi><mrow><mi>M</mi><mi>g</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>S</mi><mi>T</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>L</mi><mi>A</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo> </mo></mrow></semantics></math></inline-formula> at lower frequencies, two crossover points at 8.6 GHz and 18 GHz eventually change the trend to: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>ε</mi><mrow><mi>S</mi><mi>T</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>L</mi><mi>A</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>M</mi><mi>g</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup></mrow></semantics></math></inline-formula>. The dispersions are qualitatively interpreted using (a) theoretically calculated (T)−<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>ϵ</mi><mi>ǁ</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> phase diagram for single crystal and single domain BST-0.5 film, (b) theoretically predicted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϵ</mi><mi>ǁ</mi></msub></mrow></semantics></math></inline-formula>-dependent, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ε</mi><mo>⏊</mo><mo>/</mo></msubsup></mrow></semantics></math></inline-formula> anomaly that does not account for frequency dependence, and (c) literature reports on intrinsic and extrinsic microstructural effects, including defects-induced inhomogeneous strain and strain gradients. From the Vendik and Zubko model, the defect parameter metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ξ</mi><mi mathvariant="normal">s</mi></msub></mrow></semantics></math></inline-formula>, was estimated to be 0.51 at 40 GHz for BST-0.5 film on STO.
first_indexed 2024-03-10T08:54:32Z
format Article
id doaj.art-5fbe97df8f034e848877907db21f99fb
institution Directory Open Access Journal
issn 2073-4352
language English
last_indexed 2024-03-10T08:54:32Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Crystals
spelling doaj.art-5fbe97df8f034e848877907db21f99fb2023-11-22T07:15:53ZengMDPI AGCrystals2073-43522021-07-0111885210.3390/cryst11080852Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> FilmsSandwip K. Dey0Sudheendran Kooriyattil1Shojan P. Pavunny2Ram S. Katiyar3Guru Subramanyam4Materials Science and Engineering Program (SEMTE), Arizona State University, Tempe, AZ 85287-6106, USADepartments of Physics, Sree Kerala Varma College, Thrissur 680011, IndiaDepartment of Physics, University of Puerto Rico, San Juan, PR 00925-2537, USADepartment of Physics, University of Puerto Rico, San Juan, PR 00925-2537, USACenter of Excellence for Thin-Film Research and Surface Engineering, University of Dayton, Dayton, OH 45469-0232, USABa<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST-0.5) thin films (600 nm) were deposited on single crystal MgO, SrTiO<sub>3</sub> (STO), and LaAlO<sub>3</sub> (LAO) substrates by pulsed laser deposition at an oxygen partial pressure of 80 mTorr and temperature of 720 °C. X-ray diffraction and in situ reflection high-energy electron diffraction routinely ascertained the epitaxial quality of the (100)-oriented nanocrystalline films. The broadband microwave (1–40 GHz) dielectric properties were measured using coplanar waveguide transmission line test structures. The out-of-plane relative permittivity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>ε</mi><mo>⏊</mo><mo>/</mo></msubsup><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> exhibited strong substrate-dependent dielectric (relaxation) dispersions with their attendant peaks in loss tangent (tanδ), with the former dropping sharply from tens of thousands to ~1000 by 10 GHz. Although homogeneous in-plane strain <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>ϵ</mi><mi>ǁ</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, enhances <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ε</mi><mo>⏊</mo><mo>/</mo></msubsup></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>ε</mi><mrow><mi>M</mi><mi>g</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>S</mi><mi>T</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>L</mi><mi>A</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo> </mo></mrow></semantics></math></inline-formula> at lower frequencies, two crossover points at 8.6 GHz and 18 GHz eventually change the trend to: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mmultiscripts><mi>ε</mi><mrow><mi>S</mi><mi>T</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>L</mi><mi>A</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup><mo>></mo><mmultiscripts><mi>ε</mi><mrow><mi>M</mi><mi>g</mi><mi>O</mi></mrow><mrow><mi>B</mi><mi>S</mi><mi>T</mi><mo>−</mo><mn>0.5</mn></mrow></mmultiscripts><msubsup><mrow></mrow><mo>⏊</mo><mo>/</mo></msubsup></mrow></semantics></math></inline-formula>. The dispersions are qualitatively interpreted using (a) theoretically calculated (T)−<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>ϵ</mi><mi>ǁ</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> phase diagram for single crystal and single domain BST-0.5 film, (b) theoretically predicted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϵ</mi><mi>ǁ</mi></msub></mrow></semantics></math></inline-formula>-dependent, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>ε</mi><mo>⏊</mo><mo>/</mo></msubsup></mrow></semantics></math></inline-formula> anomaly that does not account for frequency dependence, and (c) literature reports on intrinsic and extrinsic microstructural effects, including defects-induced inhomogeneous strain and strain gradients. From the Vendik and Zubko model, the defect parameter metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ξ</mi><mi mathvariant="normal">s</mi></msub></mrow></semantics></math></inline-formula>, was estimated to be 0.51 at 40 GHz for BST-0.5 film on STO.https://www.mdpi.com/2073-4352/11/8/852dielectric permittivityloss tangentepitaxial BST thin filmsmicrowave characterizationhomogeneous in-plane strain engineeringinhomogeneous strain
spellingShingle Sandwip K. Dey
Sudheendran Kooriyattil
Shojan P. Pavunny
Ram S. Katiyar
Guru Subramanyam
Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films
Crystals
dielectric permittivity
loss tangent
epitaxial BST thin films
microwave characterization
homogeneous in-plane strain engineering
inhomogeneous strain
title Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films
title_full Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films
title_fullStr Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films
title_full_unstemmed Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films
title_short Analyses of Substrate-Dependent Broadband Microwave (1–40 GHz) Dielectric Properties of Pulsed Laser Deposited Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> Films
title_sort analyses of substrate dependent broadband microwave 1 40 ghz dielectric properties of pulsed laser deposited ba sub 0 5 sub sr sub 0 5 sub tio sub 3 sub films
topic dielectric permittivity
loss tangent
epitaxial BST thin films
microwave characterization
homogeneous in-plane strain engineering
inhomogeneous strain
url https://www.mdpi.com/2073-4352/11/8/852
work_keys_str_mv AT sandwipkdey analysesofsubstratedependentbroadbandmicrowave140ghzdielectricpropertiesofpulsedlaserdepositedbasub05subsrsub05subtiosub3subfilms
AT sudheendrankooriyattil analysesofsubstratedependentbroadbandmicrowave140ghzdielectricpropertiesofpulsedlaserdepositedbasub05subsrsub05subtiosub3subfilms
AT shojanppavunny analysesofsubstratedependentbroadbandmicrowave140ghzdielectricpropertiesofpulsedlaserdepositedbasub05subsrsub05subtiosub3subfilms
AT ramskatiyar analysesofsubstratedependentbroadbandmicrowave140ghzdielectricpropertiesofpulsedlaserdepositedbasub05subsrsub05subtiosub3subfilms
AT gurusubramanyam analysesofsubstratedependentbroadbandmicrowave140ghzdielectricpropertiesofpulsedlaserdepositedbasub05subsrsub05subtiosub3subfilms