A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns
Rhythm is a ubiquitous feature of music that induces specific neural modes of processing. In this paper, we assess the potential of a stimulus-driven linear oscillator model (Tomic & Janata, 2008) to predict dynamic attention to complex musical rhythms on an instant-by-instant basis. We use perc...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Bern Open Publishing
2018-11-01
|
Series: | Journal of Eye Movement Research |
Subjects: | |
Online Access: | https://bop.unibe.ch/JEMR/article/view/4285 |
_version_ | 1818645276924051456 |
---|---|
author | Lauren K. Fink Brian K. Hurley Joy J. Geng Petr Janata |
author_facet | Lauren K. Fink Brian K. Hurley Joy J. Geng Petr Janata |
author_sort | Lauren K. Fink |
collection | DOAJ |
description | Rhythm is a ubiquitous feature of music that induces specific neural modes of processing. In this paper, we assess the potential of a stimulus-driven linear oscillator model (Tomic & Janata, 2008) to predict dynamic attention to complex musical rhythms on an instant-by-instant basis. We use perceptual thresholds and pupillometry as attentional indices against which to test our model pre- dictions. During a deviance detection task, participants listened to continuously looping, multi- instrument, rhythmic patterns, while being eye-tracked. Their task was to respond anytime they heard an increase in intensity (dB SPL). An adaptive thresholding algorithm adjusted deviant in- tensity at multiple probed temporal locations throughout each rhythmic stimulus. The oscillator model predicted participants’ perceptual thresholds for detecting deviants at probed locations, with a low temporal salience prediction corresponding to a high perceptual threshold and vice versa. A pupil dilation response was observed for all deviants. Notably, the pupil dilated even when partic- ipants did not report hearing a deviant. Maximum pupil size and resonator model output were sig- nificant predictors of whether a deviant was detected or missed on any given trial. Besides the evoked pupillary response to deviants, we also assessed the continuous pupillary signal to the rhythmic patterns. The pupil exhibited entrainment at prominent periodicities present in the stimuli and followed each of the different rhythmic patterns in a unique way. Overall, these results repli- cate previous studies using the linear oscillator model to predict dynamic attention to complex auditory scenes and extend the utility of the model to the prediction of neurophysiological signals, in this case the pupillary time course; however, we note that the amplitude envelope of the acoustic patterns may serve as a similarly useful predictor. To our knowledge, this is the first paper to show entrainment of pupil dynamics by demonstrating a phase relationship between musical stimuli and the pupillary signal. |
first_indexed | 2024-12-17T00:28:11Z |
format | Article |
id | doaj.art-5fc65fdc80bc49748ad8d79eed4a485d |
institution | Directory Open Access Journal |
issn | 1995-8692 |
language | English |
last_indexed | 2024-12-17T00:28:11Z |
publishDate | 2018-11-01 |
publisher | Bern Open Publishing |
record_format | Article |
series | Journal of Eye Movement Research |
spelling | doaj.art-5fc65fdc80bc49748ad8d79eed4a485d2022-12-21T22:10:25ZengBern Open PublishingJournal of Eye Movement Research1995-86922018-11-0111210.16910/jemr.11.2.12A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patternsLauren K. Fink0Brian K. Hurley1Joy J. GengPetr JanataUniversity of California, DavisUniversity of California, DavisRhythm is a ubiquitous feature of music that induces specific neural modes of processing. In this paper, we assess the potential of a stimulus-driven linear oscillator model (Tomic & Janata, 2008) to predict dynamic attention to complex musical rhythms on an instant-by-instant basis. We use perceptual thresholds and pupillometry as attentional indices against which to test our model pre- dictions. During a deviance detection task, participants listened to continuously looping, multi- instrument, rhythmic patterns, while being eye-tracked. Their task was to respond anytime they heard an increase in intensity (dB SPL). An adaptive thresholding algorithm adjusted deviant in- tensity at multiple probed temporal locations throughout each rhythmic stimulus. The oscillator model predicted participants’ perceptual thresholds for detecting deviants at probed locations, with a low temporal salience prediction corresponding to a high perceptual threshold and vice versa. A pupil dilation response was observed for all deviants. Notably, the pupil dilated even when partic- ipants did not report hearing a deviant. Maximum pupil size and resonator model output were sig- nificant predictors of whether a deviant was detected or missed on any given trial. Besides the evoked pupillary response to deviants, we also assessed the continuous pupillary signal to the rhythmic patterns. The pupil exhibited entrainment at prominent periodicities present in the stimuli and followed each of the different rhythmic patterns in a unique way. Overall, these results repli- cate previous studies using the linear oscillator model to predict dynamic attention to complex auditory scenes and extend the utility of the model to the prediction of neurophysiological signals, in this case the pupillary time course; however, we note that the amplitude envelope of the acoustic patterns may serve as a similarly useful predictor. To our knowledge, this is the first paper to show entrainment of pupil dynamics by demonstrating a phase relationship between musical stimuli and the pupillary signal.https://bop.unibe.ch/JEMR/article/view/4285Pupilattentionentrainmentrhythmmusicmodeling |
spellingShingle | Lauren K. Fink Brian K. Hurley Joy J. Geng Petr Janata A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns Journal of Eye Movement Research Pupil attention entrainment rhythm music modeling |
title | A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns |
title_full | A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns |
title_fullStr | A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns |
title_full_unstemmed | A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns |
title_short | A linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns |
title_sort | linear oscillator model predicts dynamic temporal attention and pupillary entrainment to rhythmic patterns |
topic | Pupil attention entrainment rhythm music modeling |
url | https://bop.unibe.ch/JEMR/article/view/4285 |
work_keys_str_mv | AT laurenkfink alinearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT briankhurley alinearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT joyjgeng alinearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT petrjanata alinearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT laurenkfink linearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT briankhurley linearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT joyjgeng linearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns AT petrjanata linearoscillatormodelpredictsdynamictemporalattentionandpupillaryentrainmenttorhythmicpatterns |