Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity.

Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S....

Full description

Bibliographic Details
Main Authors: Mirian Michelle Machado De Paula, Nicole Joy Bassous, Samson Afewerki, Samarah Vargas Harb, Paria Ghannadian, Fernanda Roberta Marciano, Bartolomeu Cruz Viana, Carla Roberta Tim, Thomas Jay Webster, Anderson Oliveira Lobo
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0209386
Description
Summary:Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the morphology, chemical structure and wettability before and after UV photocrosslinking of the produced scaffolds. Results showed that the developed scaffolds presented hydrophilic properties after PEG and GelMA incorporation. Moreover, they were able to significantly reduce gram-positive, negative, and MRSA bacteria mainly after UV photocrosslinking (PCL:PEG:GelMa-UV). Furthermore, we performed a series of study for gaining a better mechanistic understanding of the scaffolds bactericidal activity through protein adsorption study and analysis of the reactive oxygen species (ROS) levels. Furthermore, the in vivo subcutaneous implantation performed in rats confirmed the biocompatibility of our designed scaffolds.
ISSN:1932-6203