A Thermodynamic Approach to Measuring Entropy in a Few-Electron Nanodevice

The entropy of a system gives a powerful insight into its microscopic degrees of freedom; however, standard experimental ways of measuring entropy through heat capacity are hard to apply to nanoscale systems, as they require the measurement of increasingly small amounts of heat. Two alternative entr...

Full description

Bibliographic Details
Main Authors: Eugenia Pyurbeeva, Jan A. Mol
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/6/640
Description
Summary:The entropy of a system gives a powerful insight into its microscopic degrees of freedom; however, standard experimental ways of measuring entropy through heat capacity are hard to apply to nanoscale systems, as they require the measurement of increasingly small amounts of heat. Two alternative entropy measurement methods have been recently proposed for nanodevices: through charge balance measurements and transport properties. We describe a self-consistent thermodynamic framework for applying thermodynamic relations to few-electron nanodevices—small systems, where fluctuations in particle number are significant, whilst highlighting several ongoing misconceptions. We derive a relation (a consequence of a Maxwell relation for small systems), which describes both existing entropy measurement methods as special cases, while also allowing the experimentalist to probe the intermediate regime between them. Finally, we independently prove the applicability of our framework in systems with complex microscopic dynamics—those with many excited states of various degeneracies—from microscopic considerations.
ISSN:1099-4300