The Heat Flux Vector(s) in a Two Component Fluid Mixture

Bulk kinematic properties of mixtures such as velocity are known to be the density weighed averages of the constituent velocities. No such paradigm exists for the heat flux of mixtures when the constituents have different temperatures. Using standard principles such as frame indifference, we address...

Full description

Bibliographic Details
Main Authors: A. D. Kirwan, Mehrdad Massoudi
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/5/2/77
Description
Summary:Bulk kinematic properties of mixtures such as velocity are known to be the density weighed averages of the constituent velocities. No such paradigm exists for the heat flux of mixtures when the constituents have different temperatures. Using standard principles such as frame indifference, we address this topic by developing linear constitutive equations for the constituent heat fluxes, the interaction force between constituents, and the stresses for a mixture of two fluids. Although these equations contain 18 phenomenological coefficients, we are able to use the Clausius-Duhem inequality to obtain inequalities involving the principal and cross flux coefficients. The theory is applied to some special cases and shown to reduce to standard results when the constituents have the same temperature.
ISSN:2311-5521