Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report
Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-03-01
|
Series: | Biomaterials and Biosystems |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666534421000040 |
_version_ | 1818437434727202816 |
---|---|
author | Devon J. Crouch Carl M. Sheridan Raechelle A. D'Sa Colin E. Willoughby Lucy A. Bosworth |
author_facet | Devon J. Crouch Carl M. Sheridan Raechelle A. D'Sa Colin E. Willoughby Lucy A. Bosworth |
author_sort | Devon J. Crouch |
collection | DOAJ |
description | Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which to date, is the only modifiable risk factor associated with the development of glaucoma. Lowering intraocular pressure reduces glaucoma progression and current surgical approaches for glaucoma attempt to reduce outflow resistance through the trabecular meshwork. Many surgical approaches use minimally invasive glaucoma surgeries (MIGS) to control glaucoma. In this progress report, biomaterials currently employed to treat glaucoma, such as MIGS, and the issues associated with them are described. The report also discusses innovative biofabrication approaches that aim to revolutionise glaucoma treatment through tissue engineering and regenerative medicine (TERM). At present, there are very few applications targeted towards TM engineering in vivo, with a great proportion of these biomaterial structures being developed for in vitro model use. This is a consequence of the many anatomical and physiological attributes that must be considered when designing a TERM device for microscopic tissues, such as the trabecular meshwork. Ongoing advancements in TERM research from multi-disciplinary teams should lead to the development of a state-of-the-art device to restore trabecular meshwork function and provide a bio-engineering solution to improve patient outcomes. |
first_indexed | 2024-12-14T17:24:37Z |
format | Article |
id | doaj.art-5febe1d91e1b49e7bb2a4e44f2abc421 |
institution | Directory Open Access Journal |
issn | 2666-5344 |
language | English |
last_indexed | 2024-12-14T17:24:37Z |
publishDate | 2021-03-01 |
publisher | Elsevier |
record_format | Article |
series | Biomaterials and Biosystems |
spelling | doaj.art-5febe1d91e1b49e7bb2a4e44f2abc4212022-12-21T22:53:15ZengElsevierBiomaterials and Biosystems2666-53442021-03-011100011Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress reportDevon J. Crouch0Carl M. Sheridan1Raechelle A. D'Sa2Colin E. Willoughby3Lucy A. Bosworth4Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UKDepartment of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UKSchool of Engineering, University of Liverpool, Liverpool, UKDepartment of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Biomedical Sciences Research Institute, Ulster University, Coleraine, UKDepartment of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Corresponding author.Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which to date, is the only modifiable risk factor associated with the development of glaucoma. Lowering intraocular pressure reduces glaucoma progression and current surgical approaches for glaucoma attempt to reduce outflow resistance through the trabecular meshwork. Many surgical approaches use minimally invasive glaucoma surgeries (MIGS) to control glaucoma. In this progress report, biomaterials currently employed to treat glaucoma, such as MIGS, and the issues associated with them are described. The report also discusses innovative biofabrication approaches that aim to revolutionise glaucoma treatment through tissue engineering and regenerative medicine (TERM). At present, there are very few applications targeted towards TM engineering in vivo, with a great proportion of these biomaterial structures being developed for in vitro model use. This is a consequence of the many anatomical and physiological attributes that must be considered when designing a TERM device for microscopic tissues, such as the trabecular meshwork. Ongoing advancements in TERM research from multi-disciplinary teams should lead to the development of a state-of-the-art device to restore trabecular meshwork function and provide a bio-engineering solution to improve patient outcomes.http://www.sciencedirect.com/science/article/pii/S2666534421000040Trabecular meshworkBiomaterialsTissue engineeringGlaucoma |
spellingShingle | Devon J. Crouch Carl M. Sheridan Raechelle A. D'Sa Colin E. Willoughby Lucy A. Bosworth Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report Biomaterials and Biosystems Trabecular meshwork Biomaterials Tissue engineering Glaucoma |
title | Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report |
title_full | Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report |
title_fullStr | Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report |
title_full_unstemmed | Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report |
title_short | Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report |
title_sort | exploiting biomaterial approaches to manufacture an artificial trabecular meshwork a progress report |
topic | Trabecular meshwork Biomaterials Tissue engineering Glaucoma |
url | http://www.sciencedirect.com/science/article/pii/S2666534421000040 |
work_keys_str_mv | AT devonjcrouch exploitingbiomaterialapproachestomanufactureanartificialtrabecularmeshworkaprogressreport AT carlmsheridan exploitingbiomaterialapproachestomanufactureanartificialtrabecularmeshworkaprogressreport AT raechelleadsa exploitingbiomaterialapproachestomanufactureanartificialtrabecularmeshworkaprogressreport AT colinewilloughby exploitingbiomaterialapproachestomanufactureanartificialtrabecularmeshworkaprogressreport AT lucyabosworth exploitingbiomaterialapproachestomanufactureanartificialtrabecularmeshworkaprogressreport |