An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids

Abstract Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-inva...

Full description

Bibliographic Details
Main Authors: Luca Deininger, Sabine Jung-Klawitter, Ralf Mikut, Petra Richter, Manuel Fischer, Kianush Karimian-Jazi, Michael O. Breckwoldt, Martin Bendszus, Sabine Heiland, Jens Kleesiek, Thomas Opladen, Oya Kuseyri Hübschmann, Daniel Hübschmann, Daniel Schwarz
Format: Article
Language:English
Published: Nature Portfolio 2023-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-48343-7
_version_ 1827399527376617472
author Luca Deininger
Sabine Jung-Klawitter
Ralf Mikut
Petra Richter
Manuel Fischer
Kianush Karimian-Jazi
Michael O. Breckwoldt
Martin Bendszus
Sabine Heiland
Jens Kleesiek
Thomas Opladen
Oya Kuseyri Hübschmann
Daniel Hübschmann
Daniel Schwarz
author_facet Luca Deininger
Sabine Jung-Klawitter
Ralf Mikut
Petra Richter
Manuel Fischer
Kianush Karimian-Jazi
Michael O. Breckwoldt
Martin Bendszus
Sabine Heiland
Jens Kleesiek
Thomas Opladen
Oya Kuseyri Hübschmann
Daniel Hübschmann
Daniel Schwarz
author_sort Luca Deininger
collection DOAJ
description Abstract Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-invasive, automated analysis pipeline of organoids highly desirable. This work presents a novel non-invasive approach to monitor and analyze cerebral organoids over time using high-field magnetic resonance imaging and state-of-the-art tools for automated image analysis. Three specific objectives are addressed, (I) organoid segmentation to investigate organoid development over time, (II) global cysticity classification and (III) local cyst segmentation for organoid quality assessment. We show that organoid growth can be monitored reliably over time and cystic and non-cystic organoids can be separated with high accuracy, with on par or better performance compared to state-of-the-art tools applied to brightfield imaging. Local cyst segmentation is feasible but could be further improved in the future. Overall, these results highlight the potential of the pipeline for clinical application to larger-scale comparative organoid analysis.
first_indexed 2024-03-08T19:47:21Z
format Article
id doaj.art-5feda2c05aa64bae999a541da954ed8b
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-03-08T19:47:21Z
publishDate 2023-12-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-5feda2c05aa64bae999a541da954ed8b2023-12-24T12:16:48ZengNature PortfolioScientific Reports2045-23222023-12-011311910.1038/s41598-023-48343-7An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoidsLuca Deininger0Sabine Jung-Klawitter1Ralf Mikut2Petra Richter3Manuel Fischer4Kianush Karimian-Jazi5Michael O. Breckwoldt6Martin Bendszus7Sabine Heiland8Jens Kleesiek9Thomas Opladen10Oya Kuseyri Hübschmann11Daniel Hübschmann12Daniel Schwarz13Group for Automated Image and Data Analysis, Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyDivision of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg UniversityGroup for Automated Image and Data Analysis, Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyDivision of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg UniversityDepartment of Neuroradiology, Heidelberg University HospitalDepartment of Neuroradiology, Heidelberg University HospitalDepartment of Neuroradiology, Heidelberg University HospitalDepartment of Neuroradiology, Heidelberg University HospitalDepartment of Neuroradiology, Heidelberg University HospitalInstitute for Artificial Intelligence in Medicine (IKIM), University Hospital EssenDivision of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg UniversityDivision of Pediatric Neurology and Metabolic Medicine, Department I, Center for Pediatric and Adolescent Medicine, Medical Faculty Heidelberg, Heidelberg UniversityGerman Cancer Consortium (DKTK)Department of Neuroradiology, Heidelberg University HospitalAbstract Cerebral organoids recapitulate the structure and function of the developing human brain in vitro, offering a large potential for personalized therapeutic strategies. The enormous growth of this research area over the past decade with its capability for clinical translation makes a non-invasive, automated analysis pipeline of organoids highly desirable. This work presents a novel non-invasive approach to monitor and analyze cerebral organoids over time using high-field magnetic resonance imaging and state-of-the-art tools for automated image analysis. Three specific objectives are addressed, (I) organoid segmentation to investigate organoid development over time, (II) global cysticity classification and (III) local cyst segmentation for organoid quality assessment. We show that organoid growth can be monitored reliably over time and cystic and non-cystic organoids can be separated with high accuracy, with on par or better performance compared to state-of-the-art tools applied to brightfield imaging. Local cyst segmentation is feasible but could be further improved in the future. Overall, these results highlight the potential of the pipeline for clinical application to larger-scale comparative organoid analysis.https://doi.org/10.1038/s41598-023-48343-7
spellingShingle Luca Deininger
Sabine Jung-Klawitter
Ralf Mikut
Petra Richter
Manuel Fischer
Kianush Karimian-Jazi
Michael O. Breckwoldt
Martin Bendszus
Sabine Heiland
Jens Kleesiek
Thomas Opladen
Oya Kuseyri Hübschmann
Daniel Hübschmann
Daniel Schwarz
An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids
Scientific Reports
title An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids
title_full An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids
title_fullStr An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids
title_full_unstemmed An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids
title_short An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids
title_sort ai based segmentation and analysis pipeline for high field mr monitoring of cerebral organoids
url https://doi.org/10.1038/s41598-023-48343-7
work_keys_str_mv AT lucadeininger anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT sabinejungklawitter anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT ralfmikut anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT petrarichter anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT manuelfischer anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT kianushkarimianjazi anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT michaelobreckwoldt anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT martinbendszus anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT sabineheiland anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT jenskleesiek anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT thomasopladen anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT oyakuseyrihubschmann anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT danielhubschmann anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT danielschwarz anaibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT lucadeininger aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT sabinejungklawitter aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT ralfmikut aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT petrarichter aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT manuelfischer aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT kianushkarimianjazi aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT michaelobreckwoldt aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT martinbendszus aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT sabineheiland aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT jenskleesiek aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT thomasopladen aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT oyakuseyrihubschmann aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT danielhubschmann aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids
AT danielschwarz aibasedsegmentationandanalysispipelineforhighfieldmrmonitoringofcerebralorganoids