Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter

Sentiment analysis is a technique to extract information of ones perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify societys response on covid-19 virus posted at twitter into 4 polars, namely happy, sad, angry, and scared. Classification technique u...

Full description

Bibliographic Details
Main Authors: Rifqatul Mukarramah, Dedy Atmajaya, Lutfi Budi Ilmawan
Format: Article
Language:English
Published: Fakultas Ilmu Komputer UMI 2021-08-01
Series:Ilkom Jurnal Ilmiah
Subjects:
Online Access:https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/851
Description
Summary:Sentiment analysis is a technique to extract information of ones perception, called sentiment, on an issue or event. This study employs sentiment analysis to classify societys response on covid-19 virus posted at twitter into 4 polars, namely happy, sad, angry, and scared. Classification technique used is support vector machine (SVM) method which compares the classification performance figure of 2 linear kernel functions, linear and polynomial. There were 400 tweet data used where each sentiment class consists of 100 data. Using the testing method of k-fold cross validation, the result shows the accuracy value of linear kernel function is 0.28 for unigram feature and 0.36 for trigram feature. These figures are lower compared to accuracy value of kernel polynomial with 0.34 and 0.48 for unigram and trigram feature respectively. On the other hand, testing method of confusion matrix suggests the highest performance is obtained by using kernel polynomial with accuracy value of 0.51, precision of 0.43, recall of 0.45, and f-measure of 0.51.
ISSN:2087-1716
2548-7779