Effects of Short-Range Order on the Magnetic and Mechanical Properties of FeCoNi(AlSi)x High Entropy Alloys

The properties of a material are sensitive to chemically-ordered structure in multi-element alloys. Understanding the effects of chemical short-range order (SRO) on magnetic and mechanical properties is important. In this work, we use the Monte Carlo method in combination with density functional the...

Full description

Bibliographic Details
Main Authors: Wenqiang Feng, Yang Qi, Shaoqing Wang
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/7/11/482
Description
Summary:The properties of a material are sensitive to chemically-ordered structure in multi-element alloys. Understanding the effects of chemical short-range order (SRO) on magnetic and mechanical properties is important. In this work, we use the Monte Carlo method in combination with density functional theory to investigate atomic nearest neighbor distribution, magnetic moment and elastic modulus in FeCoNi (AlSi)x alloys. It is found that the prominent feature of the FeCoNi (AlSi)x alloys is the change of SRO parameters: the SRO parameters are positive between Al-Al, Al-Si, Si-Si pairs and negative between Ni-Al, Co-Si, Fe-Co, Ni-Si and Fe-Si pairs. The Al and Si elements tend to bond with Fe, Co, Ni elements to form an SRO structure. The change of the atomic nearest neighbor environment leads to a reduction in the atomic magnetic moments of magnetic elements. The calculated saturation magnetizations by considering the effect of SRO are in good accord with the experimental values. We further show that SRO leads to an increase of the elastic modulus, by sacrificing ductility and isotropy. In the study of the structure and properties of high entropy alloys, the effect of SRO should not be ignored.
ISSN:2075-4701