Anomaly in RTT relation for DIM algebra and network matrix models

We discuss the recent proposal of arXiv:1608.05351 about generalization of the RTT relation to network matrix models. We show that the RTT relation in these models is modified by a nontrivial, but essentially abelian anomaly cocycle, which we explicitly evaluate for the free field representations of...

Full description

Bibliographic Details
Main Authors: Hidetoshi Awata, Hiroaki Kanno, Andrei Mironov, Alexei Morozov, Andrey Morozov, Yusuke Ohkubo, Yegor Zenkevich
Format: Article
Language:English
Published: Elsevier 2017-05-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321317300834
Description
Summary:We discuss the recent proposal of arXiv:1608.05351 about generalization of the RTT relation to network matrix models. We show that the RTT relation in these models is modified by a nontrivial, but essentially abelian anomaly cocycle, which we explicitly evaluate for the free field representations of the quantum toroidal algebra. This cocycle is responsible for the braiding, which permutes the external legs in the q-deformed conformal block and its 5d/6d gauge theory counterpart, i.e. the non-perturbative Nekrasov functions. Thus, it defines their modular properties and symmetry. We show how to cancel the anomaly using a construction somewhat similar to the anomaly matching condition in gauge theory. We also describe the singular limit to the affine Yangian (4d Nekrasov functions), which breaks the spectral duality.
ISSN:0550-3213
1873-1562