Infinitely many nodal solutions for a class of quasilinear elliptic equations

In this paper, we study the existence of infinitely many nodal solutions for the following quasilinear elliptic equation \begin{equation*} \begin{cases} -\nabla\cdot\left[\phi'(|\nabla u|^2)\nabla u\right]+|u|^{\alpha-2}u=f(u) , \quad x\in \mathbb{R}^N,\\ u(x)\rightarrow 0, \quad \mbox{as} ~|x|...

Full description

Bibliographic Details
Main Author: Xiaolong Yang
Format: Article
Language:English
Published: University of Szeged 2021-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8923
_version_ 1827951084787728384
author Xiaolong Yang
author_facet Xiaolong Yang
author_sort Xiaolong Yang
collection DOAJ
description In this paper, we study the existence of infinitely many nodal solutions for the following quasilinear elliptic equation \begin{equation*} \begin{cases} -\nabla\cdot\left[\phi'(|\nabla u|^2)\nabla u\right]+|u|^{\alpha-2}u=f(u) , \quad x\in \mathbb{R}^N,\\ u(x)\rightarrow 0, \quad \mbox{as} ~|x|\rightarrow \infty, \end{cases} \end{equation*} where $N\geq2$, $\phi(t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t$, $1<p<q<N$, $f\in \mathcal{C}^1(\mathbb{R}^+,\mathbb{R})$ is of subcritical, $q\le\alpha\le p^{*}q'/p'$, let $p^{*}=\frac{Np}{N-p}$, $p'$ and $q'$ be the conjugate exponents respectively of $p$ and $q$. For any given integer $k\geq 0$, we prove that the equation has a pair of radial nodal solution with exactly $k$ nodes.
first_indexed 2024-04-09T13:37:16Z
format Article
id doaj.art-6006bf7511d8458383ff7936dc2bfc18
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:16Z
publishDate 2021-04-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-6006bf7511d8458383ff7936dc2bfc182023-05-09T07:53:11ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752021-04-0120213212010.14232/ejqtde.2021.1.328923Infinitely many nodal solutions for a class of quasilinear elliptic equationsXiaolong Yang0Central China Normal University, Wuhan, P. R. ChinaIn this paper, we study the existence of infinitely many nodal solutions for the following quasilinear elliptic equation \begin{equation*} \begin{cases} -\nabla\cdot\left[\phi'(|\nabla u|^2)\nabla u\right]+|u|^{\alpha-2}u=f(u) , \quad x\in \mathbb{R}^N,\\ u(x)\rightarrow 0, \quad \mbox{as} ~|x|\rightarrow \infty, \end{cases} \end{equation*} where $N\geq2$, $\phi(t)$ behaves like $t^{q/2}$ for small $t$ and $t^{p/2}$ for large $t$, $1<p<q<N$, $f\in \mathcal{C}^1(\mathbb{R}^+,\mathbb{R})$ is of subcritical, $q\le\alpha\le p^{*}q'/p'$, let $p^{*}=\frac{Np}{N-p}$, $p'$ and $q'$ be the conjugate exponents respectively of $p$ and $q$. For any given integer $k\geq 0$, we prove that the equation has a pair of radial nodal solution with exactly $k$ nodes.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8923quasilinear elliptic equationnodal solutionsmultiple solutions
spellingShingle Xiaolong Yang
Infinitely many nodal solutions for a class of quasilinear elliptic equations
Electronic Journal of Qualitative Theory of Differential Equations
quasilinear elliptic equation
nodal solutions
multiple solutions
title Infinitely many nodal solutions for a class of quasilinear elliptic equations
title_full Infinitely many nodal solutions for a class of quasilinear elliptic equations
title_fullStr Infinitely many nodal solutions for a class of quasilinear elliptic equations
title_full_unstemmed Infinitely many nodal solutions for a class of quasilinear elliptic equations
title_short Infinitely many nodal solutions for a class of quasilinear elliptic equations
title_sort infinitely many nodal solutions for a class of quasilinear elliptic equations
topic quasilinear elliptic equation
nodal solutions
multiple solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8923
work_keys_str_mv AT xiaolongyang infinitelymanynodalsolutionsforaclassofquasilinearellipticequations