Elimination and recursions in the scattering equations
We use the elimination theory to explicitly construct the (n−3)! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3)! or a determinant of Bézout type of dimension (n−4)!. We present a recu...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-05-01
|
Series: | Physics Letters B |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S037026931600174X |
_version_ | 1818335291932409856 |
---|---|
author | Carlos Cardona Chrysostomos Kalousios |
author_facet | Carlos Cardona Chrysostomos Kalousios |
author_sort | Carlos Cardona |
collection | DOAJ |
description | We use the elimination theory to explicitly construct the (n−3)! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3)! or a determinant of Bézout type of dimension (n−4)!. We present a recursive formula for the Sylvester determinant. Expansion of the determinants yields expressions in terms of Plücker coordinates. Elimination of the rest of the variables of the scattering equations is also presented. |
first_indexed | 2024-12-13T14:21:06Z |
format | Article |
id | doaj.art-601258e554f04c1d8e274ff3e3cbd1e0 |
institution | Directory Open Access Journal |
issn | 0370-2693 1873-2445 |
language | English |
last_indexed | 2024-12-13T14:21:06Z |
publishDate | 2016-05-01 |
publisher | Elsevier |
record_format | Article |
series | Physics Letters B |
spelling | doaj.art-601258e554f04c1d8e274ff3e3cbd1e02022-12-21T23:42:06ZengElsevierPhysics Letters B0370-26931873-24452016-05-01756C18018710.1016/j.physletb.2016.03.003Elimination and recursions in the scattering equationsCarlos Cardona0Chrysostomos Kalousios1Physics Division, National Center for Theoretical Sciences, National Tsing-Hua University, Hsinchu, 30013 Taiwan, ROCICTP South American Institute for Fundamental Research, Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271 – Bl. II, 01140-070, São Paulo, SP, BrazilWe use the elimination theory to explicitly construct the (n−3)! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3)! or a determinant of Bézout type of dimension (n−4)!. We present a recursive formula for the Sylvester determinant. Expansion of the determinants yields expressions in terms of Plücker coordinates. Elimination of the rest of the variables of the scattering equations is also presented.http://www.sciencedirect.com/science/article/pii/S037026931600174XScattering amplitudesScattering equationsElimination theory |
spellingShingle | Carlos Cardona Chrysostomos Kalousios Elimination and recursions in the scattering equations Physics Letters B Scattering amplitudes Scattering equations Elimination theory |
title | Elimination and recursions in the scattering equations |
title_full | Elimination and recursions in the scattering equations |
title_fullStr | Elimination and recursions in the scattering equations |
title_full_unstemmed | Elimination and recursions in the scattering equations |
title_short | Elimination and recursions in the scattering equations |
title_sort | elimination and recursions in the scattering equations |
topic | Scattering amplitudes Scattering equations Elimination theory |
url | http://www.sciencedirect.com/science/article/pii/S037026931600174X |
work_keys_str_mv | AT carloscardona eliminationandrecursionsinthescatteringequations AT chrysostomoskalousios eliminationandrecursionsinthescatteringequations |