Elimination and recursions in the scattering equations

We use the elimination theory to explicitly construct the (n−3)! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3)! or a determinant of Bézout type of dimension (n−4)!. We present a recu...

Full description

Bibliographic Details
Main Authors: Carlos Cardona, Chrysostomos Kalousios
Format: Article
Language:English
Published: Elsevier 2016-05-01
Series:Physics Letters B
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S037026931600174X
_version_ 1818335291932409856
author Carlos Cardona
Chrysostomos Kalousios
author_facet Carlos Cardona
Chrysostomos Kalousios
author_sort Carlos Cardona
collection DOAJ
description We use the elimination theory to explicitly construct the (n−3)! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3)! or a determinant of Bézout type of dimension (n−4)!. We present a recursive formula for the Sylvester determinant. Expansion of the determinants yields expressions in terms of Plücker coordinates. Elimination of the rest of the variables of the scattering equations is also presented.
first_indexed 2024-12-13T14:21:06Z
format Article
id doaj.art-601258e554f04c1d8e274ff3e3cbd1e0
institution Directory Open Access Journal
issn 0370-2693
1873-2445
language English
last_indexed 2024-12-13T14:21:06Z
publishDate 2016-05-01
publisher Elsevier
record_format Article
series Physics Letters B
spelling doaj.art-601258e554f04c1d8e274ff3e3cbd1e02022-12-21T23:42:06ZengElsevierPhysics Letters B0370-26931873-24452016-05-01756C18018710.1016/j.physletb.2016.03.003Elimination and recursions in the scattering equationsCarlos Cardona0Chrysostomos Kalousios1Physics Division, National Center for Theoretical Sciences, National Tsing-Hua University, Hsinchu, 30013 Taiwan, ROCICTP South American Institute for Fundamental Research, Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271 – Bl. II, 01140-070, São Paulo, SP, BrazilWe use the elimination theory to explicitly construct the (n−3)! order polynomial in one of the variables of the scattering equations. The answer can be given either in terms of a determinant of Sylvester type of dimension (n−3)! or a determinant of Bézout type of dimension (n−4)!. We present a recursive formula for the Sylvester determinant. Expansion of the determinants yields expressions in terms of Plücker coordinates. Elimination of the rest of the variables of the scattering equations is also presented.http://www.sciencedirect.com/science/article/pii/S037026931600174XScattering amplitudesScattering equationsElimination theory
spellingShingle Carlos Cardona
Chrysostomos Kalousios
Elimination and recursions in the scattering equations
Physics Letters B
Scattering amplitudes
Scattering equations
Elimination theory
title Elimination and recursions in the scattering equations
title_full Elimination and recursions in the scattering equations
title_fullStr Elimination and recursions in the scattering equations
title_full_unstemmed Elimination and recursions in the scattering equations
title_short Elimination and recursions in the scattering equations
title_sort elimination and recursions in the scattering equations
topic Scattering amplitudes
Scattering equations
Elimination theory
url http://www.sciencedirect.com/science/article/pii/S037026931600174X
work_keys_str_mv AT carloscardona eliminationandrecursionsinthescatteringequations
AT chrysostomoskalousios eliminationandrecursionsinthescatteringequations