Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler

Objective. In most cases, when determining the stress-deformed state of three-layer structures, it is assumed that bearing layers obey the Kirchhoff-Love hypothesis, while a filler obey the Neit (vanderNeit), or “broken line”, hypothesis. But in many cases, the results of our research show that this...

Full description

Bibliographic Details
Main Authors: O. M. Ustarkhanov, Kh. M. Muselemov, Kh. M. Gapparov
Format: Article
Language:Russian
Published: Dagestan State Technical University 2021-07-01
Series:Вестник Дагестанского государственного технического университета: Технические науки
Subjects:
Online Access:https://vestnik.dgtu.ru/jour/article/view/942
_version_ 1797702357673312256
author O. M. Ustarkhanov
Kh. M. Muselemov
Kh. M. Gapparov
author_facet O. M. Ustarkhanov
Kh. M. Muselemov
Kh. M. Gapparov
author_sort O. M. Ustarkhanov
collection DOAJ
description Objective. In most cases, when determining the stress-deformed state of three-layer structures, it is assumed that bearing layers obey the Kirchhoff-Love hypothesis, while a filler obey the Neit (vanderNeit), or “broken line”, hypothesis. But in many cases, the results of our research show that this is not always accurate. Methods. It is proposed to solve the three-dimensional problem of determining the stress-deformed state of a three-layer structure using cubic functions of the law of aggregate deformation distribution along the normal line, obtained on the basis of the law of deformation compatibility at “filler – bearing layer” boundaries and the construction of boundary conditions in joint zones. Results. Equilibrium equations of a three-layer beam obtained on the basis of this hypothesis are shown in Table 1. The given partial differential equations are of the 12th order and we transformed them into homogeneous equations of the 1st order to simplify the solution. This solution is implemented using the mathematical modelling software package Mаple 5.4. Conclusion. The work of the filler in the direction of OX axis has a certain value, which affects the overall stress state of the three-layer structure (in existing hypotheses, it is zero).
first_indexed 2024-03-12T04:49:54Z
format Article
id doaj.art-601604b1aa5742ca8c835b85f466a23d
institution Directory Open Access Journal
issn 2073-6185
2542-095X
language Russian
last_indexed 2024-03-12T04:49:54Z
publishDate 2021-07-01
publisher Dagestan State Technical University
record_format Article
series Вестник Дагестанского государственного технического университета: Технические науки
spelling doaj.art-601604b1aa5742ca8c835b85f466a23d2023-09-03T09:26:27ZrusDagestan State Technical UniversityВестник Дагестанского государственного технического университета: Технические науки2073-61852542-095X2021-07-0148212413210.21822/2073-6185-2021-48-2-124-132642Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a fillerO. M. Ustarkhanov0Kh. M. Muselemov1Kh. M. Gapparov2Дагестанский государственный технический университетДагестанский государственный технический университетДагестанский государственный технический университетObjective. In most cases, when determining the stress-deformed state of three-layer structures, it is assumed that bearing layers obey the Kirchhoff-Love hypothesis, while a filler obey the Neit (vanderNeit), or “broken line”, hypothesis. But in many cases, the results of our research show that this is not always accurate. Methods. It is proposed to solve the three-dimensional problem of determining the stress-deformed state of a three-layer structure using cubic functions of the law of aggregate deformation distribution along the normal line, obtained on the basis of the law of deformation compatibility at “filler – bearing layer” boundaries and the construction of boundary conditions in joint zones. Results. Equilibrium equations of a three-layer beam obtained on the basis of this hypothesis are shown in Table 1. The given partial differential equations are of the 12th order and we transformed them into homogeneous equations of the 1st order to simplify the solution. This solution is implemented using the mathematical modelling software package Mаple 5.4. Conclusion. The work of the filler in the direction of OX axis has a certain value, which affects the overall stress state of the three-layer structure (in existing hypotheses, it is zero).https://vestnik.dgtu.ru/jour/article/view/942трёхслойная конструкциянесущий слойзаполнительгипотезанапряжённо-деформированное состояниеуравнения равновесия
spellingShingle O. M. Ustarkhanov
Kh. M. Muselemov
Kh. M. Gapparov
Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
Вестник Дагестанского государственного технического университета: Технические науки
трёхслойная конструкция
несущий слой
заполнитель
гипотеза
напряжённо-деформированное состояние
уравнения равновесия
title Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
title_full Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
title_fullStr Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
title_full_unstemmed Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
title_short Stress-deformed state of a three-layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
title_sort stress deformed state of a three layer structure taking into account the hypothesis of cubic displacement pattern over the thickness of a filler
topic трёхслойная конструкция
несущий слой
заполнитель
гипотеза
напряжённо-деформированное состояние
уравнения равновесия
url https://vestnik.dgtu.ru/jour/article/view/942
work_keys_str_mv AT omustarkhanov stressdeformedstateofathreelayerstructuretakingintoaccountthehypothesisofcubicdisplacementpatternoverthethicknessofafiller
AT khmmuselemov stressdeformedstateofathreelayerstructuretakingintoaccountthehypothesisofcubicdisplacementpatternoverthethicknessofafiller
AT khmgapparov stressdeformedstateofathreelayerstructuretakingintoaccountthehypothesisofcubicdisplacementpatternoverthethicknessofafiller