Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes

Many families of binary nonlinear codes (e.g., Kerdock, Goethals, Delsarte–Goethals, Preparata) can be very simply constructed from linear codes over the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><...

Full description

Bibliographic Details
Main Authors: Aleksandar Minja, Vojin Šenk
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/3/443
_version_ 1797318458903363584
author Aleksandar Minja
Vojin Šenk
author_facet Aleksandar Minja
Vojin Šenk
author_sort Aleksandar Minja
collection DOAJ
description Many families of binary nonlinear codes (e.g., Kerdock, Goethals, Delsarte–Goethals, Preparata) can be very simply constructed from linear codes over the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>4</mn></msub></semantics></math></inline-formula> ring (ring of integers modulo 4), by applying the Gray map to the quaternary symbols. Generalized Kerdock codes represent an extension of classical Kerdock codes to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> ring. In this paper, we develop two novel soft-input decoders, designed to exploit the unique structure of these codes. We introduce a novel soft-input ML decoding algorithm and a soft-input soft-output MAP decoding algorithm of generalized Kerdock codes, with a complexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>N</mi><mi>S</mi></msup><msub><mo form="prefix">log</mo><mn>2</mn></msub><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <i>N</i> is the length of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> code, that is, the number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> symbols in a codeword. Simulations show that our novel decoders outperform the classical lifting decoder in terms of error rate by some 5 dB.
first_indexed 2024-03-08T03:52:41Z
format Article
id doaj.art-6019a99434a149b6b5597a4bf8f15ce3
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T03:52:41Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-6019a99434a149b6b5597a4bf8f15ce32024-02-09T15:18:22ZengMDPI AGMathematics2227-73902024-01-0112344310.3390/math12030443Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock CodesAleksandar Minja0Vojin Šenk1Department of Power, Electronic and Telecommunication Engineering, Faculty of Engineering (Technical Sciences), University of Novi Sad, 21000 Novi Sad, SerbiaDepartment of Power, Electronic and Telecommunication Engineering, Faculty of Engineering (Technical Sciences), University of Novi Sad, 21000 Novi Sad, SerbiaMany families of binary nonlinear codes (e.g., Kerdock, Goethals, Delsarte–Goethals, Preparata) can be very simply constructed from linear codes over the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mn>4</mn></msub></semantics></math></inline-formula> ring (ring of integers modulo 4), by applying the Gray map to the quaternary symbols. Generalized Kerdock codes represent an extension of classical Kerdock codes to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> ring. In this paper, we develop two novel soft-input decoders, designed to exploit the unique structure of these codes. We introduce a novel soft-input ML decoding algorithm and a soft-input soft-output MAP decoding algorithm of generalized Kerdock codes, with a complexity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">O</mi><mo>(</mo><msup><mi>N</mi><mi>S</mi></msup><msub><mo form="prefix">log</mo><mn>2</mn></msub><mi>N</mi><mo>)</mo></mrow></semantics></math></inline-formula>, where <i>N</i> is the length of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> code, that is, the number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> symbols in a codeword. Simulations show that our novel decoders outperform the classical lifting decoder in terms of error rate by some 5 dB.https://www.mdpi.com/2227-7390/12/3/443codes over ringsKerdock codesMAP decodingMonte Carlo simulation
spellingShingle Aleksandar Minja
Vojin Šenk
Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes
Mathematics
codes over rings
Kerdock codes
MAP decoding
Monte Carlo simulation
title Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes
title_full Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes
title_fullStr Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes
title_full_unstemmed Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes
title_short Decoding of <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><msup><mn>2</mn><mi>S</mi></msup></msub></semantics></math></inline-formula> Linear Generalized Kerdock Codes
title_sort decoding of inline formula math display inline semantics msub mi mathvariant double struck z mi msup mn 2 mn mi s mi msup msub semantics math inline formula linear generalized kerdock codes
topic codes over rings
Kerdock codes
MAP decoding
Monte Carlo simulation
url https://www.mdpi.com/2227-7390/12/3/443
work_keys_str_mv AT aleksandarminja decodingofinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimsupmn2mnmismimsupmsubsemanticsmathinlineformulalineargeneralizedkerdockcodes
AT vojinsenk decodingofinlineformulamathdisplayinlinesemanticsmsubmimathvariantdoublestruckzmimsupmn2mnmismimsupmsubsemanticsmathinlineformulalineargeneralizedkerdockcodes