Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion

We analytically and numerically investigate the stability and dynamics of the plane wave solutions of the fractional nonlinear Schrödinger (NLS) equation, where the long-range dispersion is described by the fractional Laplacian <inline-formula><math xmlns="http://www.w3.org/1998/Math/M...

Full description

Bibliographic Details
Main Authors: Siwei Duo, Taras I. Lakoba, Yanzhi Zhang
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1394
_version_ 1797522004051492864
author Siwei Duo
Taras I. Lakoba
Yanzhi Zhang
author_facet Siwei Duo
Taras I. Lakoba
Yanzhi Zhang
author_sort Siwei Duo
collection DOAJ
description We analytically and numerically investigate the stability and dynamics of the plane wave solutions of the fractional nonlinear Schrödinger (NLS) equation, where the long-range dispersion is described by the fractional Laplacian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>(</mo><mo>−</mo><mo>Δ</mo><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>. The linear stability analysis shows that plane wave solutions in the defocusing NLS are always stable if the power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula> but unstable for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. In the focusing case, they can be linearly unstable for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula>. We then apply the split-step Fourier spectral (SSFS) method to simulate the nonlinear stage of the plane waves dynamics. In agreement with earlier studies of solitary wave solutions of the fractional focusing NLS, we find that as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula> decreases, the solution evolves towards an increasingly localized pulse existing on the background of a “sea” of small-amplitude dispersive waves. Such a highly localized pulse has a broad spectrum, most of whose modes are excited in the nonlinear stage of the pulse evolution and are not predicted by the linear stability analysis. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we always find the solution to undergo collapse. We also show, for the first time to our knowledge, that for initial conditions with nonzero group velocities (traveling plane waves), an onset of collapse is delayed compared to that for a standing plane wave initial condition. For defocusing fractional NLS, even though we find traveling plane waves to be linearly unstable for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we have never observed collapse. As a by-product of our numerical studies, we derive a stability condition on the time step of the SSFS to guarantee that this method is free from numerical instabilities.
first_indexed 2024-03-10T08:20:27Z
format Article
id doaj.art-601b932dd1364d1fb06fdc143cf84ac6
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T08:20:27Z
publishDate 2021-08-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-601b932dd1364d1fb06fdc143cf84ac62023-11-22T10:00:44ZengMDPI AGSymmetry2073-89942021-08-01138139410.3390/sym13081394Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range DispersionSiwei Duo0Taras I. Lakoba1Yanzhi Zhang2Department of Mathematics, University of South Carolina, Columbia, SC 29208, USADepartment of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USADepartment of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, USAWe analytically and numerically investigate the stability and dynamics of the plane wave solutions of the fractional nonlinear Schrödinger (NLS) equation, where the long-range dispersion is described by the fractional Laplacian <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>(</mo><mo>−</mo><mo>Δ</mo><mo>)</mo></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>. The linear stability analysis shows that plane wave solutions in the defocusing NLS are always stable if the power <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula> but unstable for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>. In the focusing case, they can be linearly unstable for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula>. We then apply the split-step Fourier spectral (SSFS) method to simulate the nonlinear stage of the plane waves dynamics. In agreement with earlier studies of solitary wave solutions of the fractional focusing NLS, we find that as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula> decreases, the solution evolves towards an increasingly localized pulse existing on the background of a “sea” of small-amplitude dispersive waves. Such a highly localized pulse has a broad spectrum, most of whose modes are excited in the nonlinear stage of the pulse evolution and are not predicted by the linear stability analysis. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we always find the solution to undergo collapse. We also show, for the first time to our knowledge, that for initial conditions with nonzero group velocities (traveling plane waves), an onset of collapse is delayed compared to that for a standing plane wave initial condition. For defocusing fractional NLS, even though we find traveling plane waves to be linearly unstable for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we have never observed collapse. As a by-product of our numerical studies, we derive a stability condition on the time step of the SSFS to guarantee that this method is free from numerical instabilities.https://www.mdpi.com/2073-8994/13/8/1394fractional nonlinear Schrödinger equationfractional Laplacianplane wave solutionmodulation instabilitysplit-step methodnumerical stability
spellingShingle Siwei Duo
Taras I. Lakoba
Yanzhi Zhang
Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
Symmetry
fractional nonlinear Schrödinger equation
fractional Laplacian
plane wave solution
modulation instability
split-step method
numerical stability
title Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
title_full Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
title_fullStr Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
title_full_unstemmed Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
title_short Dynamics of Plane Waves in the Fractional Nonlinear Schrödinger Equation with Long-Range Dispersion
title_sort dynamics of plane waves in the fractional nonlinear schrodinger equation with long range dispersion
topic fractional nonlinear Schrödinger equation
fractional Laplacian
plane wave solution
modulation instability
split-step method
numerical stability
url https://www.mdpi.com/2073-8994/13/8/1394
work_keys_str_mv AT siweiduo dynamicsofplanewavesinthefractionalnonlinearschrodingerequationwithlongrangedispersion
AT tarasilakoba dynamicsofplanewavesinthefractionalnonlinearschrodingerequationwithlongrangedispersion
AT yanzhizhang dynamicsofplanewavesinthefractionalnonlinearschrodingerequationwithlongrangedispersion