Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix

In this paper, we consider a new Sylvester-Kac matrix, i.e., Fibonacci-Sylvester-Kac matrix. We discuss the eigenvalues, eigenvectors and characteristic polynomial of this matrix in two categories based on whether the Fibonacci-Sylvester-Kac matrix order is odd or even. Besides, we also give the exp...

Full description

Bibliographic Details
Main Authors: Jiang Zhaolin, Zheng Yanpeng, Li Tianzi
Format: Article
Language:English
Published: De Gruyter 2021-08-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2021-0145
_version_ 1811222919345340416
author Jiang Zhaolin
Zheng Yanpeng
Li Tianzi
author_facet Jiang Zhaolin
Zheng Yanpeng
Li Tianzi
author_sort Jiang Zhaolin
collection DOAJ
description In this paper, we consider a new Sylvester-Kac matrix, i.e., Fibonacci-Sylvester-Kac matrix. We discuss the eigenvalues, eigenvectors and characteristic polynomial of this matrix in two categories based on whether the Fibonacci-Sylvester-Kac matrix order is odd or even. Besides, we also give the explicit formulas for its determinant and inverse.
first_indexed 2024-04-12T08:24:22Z
format Article
id doaj.art-601cc38777e7426693b53bebd625f150
institution Directory Open Access Journal
issn 2300-7451
language English
last_indexed 2024-04-12T08:24:22Z
publishDate 2021-08-01
publisher De Gruyter
record_format Article
series Special Matrices
spelling doaj.art-601cc38777e7426693b53bebd625f1502022-12-22T03:40:28ZengDe GruyterSpecial Matrices2300-74512021-08-01101404610.1515/spma-2021-0145Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrixJiang Zhaolin0Zheng Yanpeng1Li Tianzi2School of Mathematics and Statistics, Linyi University, Linyi276000, ChinaSchool of Automation and Electrical Engineering, Linyi University, Linyi276000, ChinaSchool of Mathematics and Statistics, Linyi University, Linyi276000, ChinaIn this paper, we consider a new Sylvester-Kac matrix, i.e., Fibonacci-Sylvester-Kac matrix. We discuss the eigenvalues, eigenvectors and characteristic polynomial of this matrix in two categories based on whether the Fibonacci-Sylvester-Kac matrix order is odd or even. Besides, we also give the explicit formulas for its determinant and inverse.https://doi.org/10.1515/spma-2021-0145sylvester-kac matrixfibonacci numbercharacteristic polynomialdeterminantinverse15a0915a1515a18
spellingShingle Jiang Zhaolin
Zheng Yanpeng
Li Tianzi
Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix
Special Matrices
sylvester-kac matrix
fibonacci number
characteristic polynomial
determinant
inverse
15a09
15a15
15a18
title Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix
title_full Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix
title_fullStr Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix
title_full_unstemmed Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix
title_short Characteristic polynomial, determinant and inverse of a Fibonacci-Sylvester-Kac matrix
title_sort characteristic polynomial determinant and inverse of a fibonacci sylvester kac matrix
topic sylvester-kac matrix
fibonacci number
characteristic polynomial
determinant
inverse
15a09
15a15
15a18
url https://doi.org/10.1515/spma-2021-0145
work_keys_str_mv AT jiangzhaolin characteristicpolynomialdeterminantandinverseofafibonaccisylvesterkacmatrix
AT zhengyanpeng characteristicpolynomialdeterminantandinverseofafibonaccisylvesterkacmatrix
AT litianzi characteristicpolynomialdeterminantandinverseofafibonaccisylvesterkacmatrix