Theoretical validation of ground-based microwave ozone observations
Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D) chemical/radiative/dynamical model, respectively. O<sub>3</sub> diur...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
1994-06-01
|
Series: | Annales Geophysicae |
Online Access: | https://www.ann-geophys.net/12/664/1994/angeo-12-664-1994.pdf |
Summary: | Ground-based microwave measurements of the
diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by
comparing with results from a zero-dimensional photochemical model and a
two-dimensional (2D) chemical/radiative/dynamical model, respectively. O<sub>3</sub>
diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory
to within 5%. For the seasonal analysis of O<sub>3</sub> variation, at 42±4.5
km, the 2D model underestimates the yearly averaged ozone concentration compared
with the measurements. A double maximum oscillation (~3.5%) is measured in
Bordeaux with an extended maximum in September and a maximum in February, whilst
the 2D model predicts only a single large maximum (17%) in August and a
pronounced minimum in January. Evidence suggests that dynamical transport causes
the winter O<sub>3</sub> maximum by propagation of planetary waves, phenomena
which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled
yearly averaged O<sub>3</sub> concentration is in very good agreement with the
measured yearly average. A strong annual oscillation is both measured and
modeled with differences in the amplitude shown to be exclusively linked to
temperature fields. |
---|---|
ISSN: | 0992-7689 1432-0576 |