Polyethylene-polyaniline Nanofiber Composites: Evaluation of Experimental Conditions of in situ Polymerization

The difficult processability of polyaniline (PAni) can be overcome by preparing composites with high density polyethylene (HDPE), resulting in a conducting material with improved mechanical properties. PAni nanofibers were synthesized in this research using a rapid mixing method, while HDPE/PAni com...

Full description

Bibliographic Details
Main Authors: Ana Paula Graebin, Leila Bonnaud, Olivier Persenaire, Oltea Murariu, Philippe Dubois, Zenis Novais da Rocha, Nara Regina de Souza Basso
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2015-10-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/pdf/mr/v18s2/1516-1439-mr-1516-1439348914.pdf
Description
Summary:The difficult processability of polyaniline (PAni) can be overcome by preparing composites with high density polyethylene (HDPE), resulting in a conducting material with improved mechanical properties. PAni nanofibers were synthesized in this research using a rapid mixing method, while HDPE/PAni composites were prepared by in situ polymerization using Cp2ZrCl2/MAO as a catalyst system. Different experimental conditions for polymerization and an electrochemical study were performed. The findings confirmed that the addition of small amounts of Pani (up to 7%) and longer impregnation (120 min) with methylaluminoxane (MAO) before polymerization are important factors contributing to increased catalytic activity. Analysis by cyclic and differential pulse voltammetry indicates that MAO reacts with the PAni in the ethylene polymerization process, and forms active species in the presence of the catalyst. Changes in catalytic activity may be due to the kinetic consumption of the active species, which become less important in the presence of PAni.
ISSN:1516-1439