The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum

Abstract Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D 3 2 $$ {D}_3^{(2)} $$ spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0, π 4 $$ \fra...

Full description

Bibliographic Details
Main Authors: Holger Frahm, Sascha Gehrmann, Rafael I. Nepomechie, Ana L. Retore
Format: Article
Language:English
Published: SpringerOpen 2023-11-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP11(2023)095
_version_ 1797199673768804352
author Holger Frahm
Sascha Gehrmann
Rafael I. Nepomechie
Ana L. Retore
author_facet Holger Frahm
Sascha Gehrmann
Rafael I. Nepomechie
Ana L. Retore
author_sort Holger Frahm
collection DOAJ
description Abstract Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D 3 2 $$ {D}_3^{(2)} $$ spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0, π 4 $$ \frac{\pi }{4} $$ ). Besides two compact degrees of freedom, we identify two independent continuous components in the finite-size spectrum. The influence of large twist angles on the latter reveals also the presence of discrete states. This allows for a conjecture on the central charge of the conformal field theory describing the scaling limit of the lattice model.
first_indexed 2024-03-10T22:23:13Z
format Article
id doaj.art-6032e620cb2e40e29166db2c5aeb97bd
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-04-24T07:19:30Z
publishDate 2023-11-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-6032e620cb2e40e29166db2c5aeb97bd2024-04-21T11:05:47ZengSpringerOpenJournal of High Energy Physics1029-84792023-11-0120231113210.1007/JHEP11(2023)095The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrumHolger Frahm0Sascha Gehrmann1Rafael I. Nepomechie2Ana L. Retore3Institut für Theoretische Physik, Leibniz Universität HannoverInstitut für Theoretische Physik, Leibniz Universität HannoverPhysics Department, University of MiamiDepartment of Mathematical Sciences, Durham UniversityAbstract Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D 3 2 $$ {D}_3^{(2)} $$ spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0, π 4 $$ \frac{\pi }{4} $$ ). Besides two compact degrees of freedom, we identify two independent continuous components in the finite-size spectrum. The influence of large twist angles on the latter reveals also the presence of discrete states. This allows for a conjecture on the central charge of the conformal field theory describing the scaling limit of the lattice model.https://doi.org/10.1007/JHEP11(2023)095Bethe AnsatzLattice Integrable ModelsEffective Field TheoriesConformal and W Symmetry
spellingShingle Holger Frahm
Sascha Gehrmann
Rafael I. Nepomechie
Ana L. Retore
The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
Journal of High Energy Physics
Bethe Ansatz
Lattice Integrable Models
Effective Field Theories
Conformal and W Symmetry
title The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
title_full The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
title_fullStr The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
title_full_unstemmed The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
title_short The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
title_sort d 3 2 d 3 2 spin chain and its finite size spectrum
topic Bethe Ansatz
Lattice Integrable Models
Effective Field Theories
Conformal and W Symmetry
url https://doi.org/10.1007/JHEP11(2023)095
work_keys_str_mv AT holgerfrahm thed32d32spinchainanditsfinitesizespectrum
AT saschagehrmann thed32d32spinchainanditsfinitesizespectrum
AT rafaelinepomechie thed32d32spinchainanditsfinitesizespectrum
AT analretore thed32d32spinchainanditsfinitesizespectrum
AT holgerfrahm d32d32spinchainanditsfinitesizespectrum
AT saschagehrmann d32d32spinchainanditsfinitesizespectrum
AT rafaelinepomechie d32d32spinchainanditsfinitesizespectrum
AT analretore d32d32spinchainanditsfinitesizespectrum