The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum
Abstract Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D 3 2 $$ {D}_3^{(2)} $$ spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0, π 4 $$ \fra...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2023-11-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP11(2023)095 |
_version_ | 1797199673768804352 |
---|---|
author | Holger Frahm Sascha Gehrmann Rafael I. Nepomechie Ana L. Retore |
author_facet | Holger Frahm Sascha Gehrmann Rafael I. Nepomechie Ana L. Retore |
author_sort | Holger Frahm |
collection | DOAJ |
description | Abstract Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D 3 2 $$ {D}_3^{(2)} $$ spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0, π 4 $$ \frac{\pi }{4} $$ ). Besides two compact degrees of freedom, we identify two independent continuous components in the finite-size spectrum. The influence of large twist angles on the latter reveals also the presence of discrete states. This allows for a conjecture on the central charge of the conformal field theory describing the scaling limit of the lattice model. |
first_indexed | 2024-03-10T22:23:13Z |
format | Article |
id | doaj.art-6032e620cb2e40e29166db2c5aeb97bd |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-04-24T07:19:30Z |
publishDate | 2023-11-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-6032e620cb2e40e29166db2c5aeb97bd2024-04-21T11:05:47ZengSpringerOpenJournal of High Energy Physics1029-84792023-11-0120231113210.1007/JHEP11(2023)095The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrumHolger Frahm0Sascha Gehrmann1Rafael I. Nepomechie2Ana L. Retore3Institut für Theoretische Physik, Leibniz Universität HannoverInstitut für Theoretische Physik, Leibniz Universität HannoverPhysics Department, University of MiamiDepartment of Mathematical Sciences, Durham UniversityAbstract Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D 3 2 $$ {D}_3^{(2)} $$ spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0, π 4 $$ \frac{\pi }{4} $$ ). Besides two compact degrees of freedom, we identify two independent continuous components in the finite-size spectrum. The influence of large twist angles on the latter reveals also the presence of discrete states. This allows for a conjecture on the central charge of the conformal field theory describing the scaling limit of the lattice model.https://doi.org/10.1007/JHEP11(2023)095Bethe AnsatzLattice Integrable ModelsEffective Field TheoriesConformal and W Symmetry |
spellingShingle | Holger Frahm Sascha Gehrmann Rafael I. Nepomechie Ana L. Retore The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum Journal of High Energy Physics Bethe Ansatz Lattice Integrable Models Effective Field Theories Conformal and W Symmetry |
title | The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum |
title_full | The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum |
title_fullStr | The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum |
title_full_unstemmed | The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum |
title_short | The D 3 2 $$ {D}_3^{(2)} $$ spin chain and its finite-size spectrum |
title_sort | d 3 2 d 3 2 spin chain and its finite size spectrum |
topic | Bethe Ansatz Lattice Integrable Models Effective Field Theories Conformal and W Symmetry |
url | https://doi.org/10.1007/JHEP11(2023)095 |
work_keys_str_mv | AT holgerfrahm thed32d32spinchainanditsfinitesizespectrum AT saschagehrmann thed32d32spinchainanditsfinitesizespectrum AT rafaelinepomechie thed32d32spinchainanditsfinitesizespectrum AT analretore thed32d32spinchainanditsfinitesizespectrum AT holgerfrahm d32d32spinchainanditsfinitesizespectrum AT saschagehrmann d32d32spinchainanditsfinitesizespectrum AT rafaelinepomechie d32d32spinchainanditsfinitesizespectrum AT analretore d32d32spinchainanditsfinitesizespectrum |