Unbalanced-Tests to the Improvement of Yield and Quality

An integrated-circuit testing model (DITM) is used to describe various factors that affect test yield during a test process. We used a probability distribution model to evaluate test yield and quality and introduced a threshold test and a guardband test. As a result of the development speed of the s...

Full description

Bibliographic Details
Main Authors: Chung-Huang Yeh, Jwu-E Chen
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/23/3032
Description
Summary:An integrated-circuit testing model (DITM) is used to describe various factors that affect test yield during a test process. We used a probability distribution model to evaluate test yield and quality and introduced a threshold test and a guardband test. As a result of the development speed of the semiconductor manufacturing industry in the future being unpredictable, we use electrical properties of existing products and the current manufacturing technology to estimate future product-distribution trends. In the development of very-large-scale integration (VLSI) testing, the progress of testing technology is very slow. To improve product testing yield and quality, we change the test method and propose an unbalanced-test method, leading to improvements in test results. The calculation using our proposed model and data estimated by the product published by the IEEE International Roadmap for Devices and Systems (IRDS, 2017) proves that the proposed unbalanced-test method can greatly improve test yield and quality and achieve the goal of high-quality, near-zero-defect products.
ISSN:2079-9292