Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings

An RNA bi-structure is a pair of RNA secondary structures that are considered as arc-diagrams. We present a novel weighted homology theory for RNA bi-structures, which was obtained through the intersections of loops. The weighted homology of the intersection complex <i>X</i> features a n...

Full description

Bibliographic Details
Main Authors: Andrei Bura, Qijun He, Christian Reidys
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/7/744
_version_ 1827696282689339392
author Andrei Bura
Qijun He
Christian Reidys
author_facet Andrei Bura
Qijun He
Christian Reidys
author_sort Andrei Bura
collection DOAJ
description An RNA bi-structure is a pair of RNA secondary structures that are considered as arc-diagrams. We present a novel weighted homology theory for RNA bi-structures, which was obtained through the intersections of loops. The weighted homology of the intersection complex <i>X</i> features a new boundary operator and is formulated over a discrete valuation ring, <i>R</i>. We establish basic properties of the weighted complex and show how to deform it in order to eliminate any 3-simplices. We connect the simplicial homology, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>i</mi></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and weighted homology, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>i</mi><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, in two ways: first, via chain maps, and second, via the relative homology. We compute <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>0</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> by means of a recursive contraction procedure on a weighted spanning tree and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> via an inflation map, by which the simplicial homology of the 1-skeleton allows us to determine the weighted homology <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The homology module <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> is naturally obtained from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> via chain maps. Furthermore, we show that all weighted homology modules <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>i</mi><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are trivial for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>></mo><mn>2</mn></mrow></semantics></math></inline-formula>. The invariant factors of our structure theorems, as well as the weighted Whitehead moves facilitating the removal of filled tetrahedra, are given a combinatorial interpretation. The weighted homology of bi-structures augments the simplicial counterpart by introducing novel torsion submodules and preserving the free submodules that appear in the simplicial homology.
first_indexed 2024-03-10T12:44:29Z
format Article
id doaj.art-60366285aea9480d8c93de5862b2415c
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:44:29Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-60366285aea9480d8c93de5862b2415c2023-11-21T13:34:22ZengMDPI AGMathematics2227-73902021-03-019774410.3390/math9070744Weighted Homology of Bi-Structures over Certain Discrete Valuation RingsAndrei Bura0Qijun He1Christian Reidys2Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904-4298, USABiocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904-4298, USABiocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904-4298, USAAn RNA bi-structure is a pair of RNA secondary structures that are considered as arc-diagrams. We present a novel weighted homology theory for RNA bi-structures, which was obtained through the intersections of loops. The weighted homology of the intersection complex <i>X</i> features a new boundary operator and is formulated over a discrete valuation ring, <i>R</i>. We establish basic properties of the weighted complex and show how to deform it in order to eliminate any 3-simplices. We connect the simplicial homology, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mi>i</mi></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, and weighted homology, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>i</mi><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, in two ways: first, via chain maps, and second, via the relative homology. We compute <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>0</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> by means of a recursive contraction procedure on a weighted spanning tree and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> via an inflation map, by which the simplicial homology of the 1-skeleton allows us to determine the weighted homology <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>1</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The homology module <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> is naturally obtained from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> via chain maps. Furthermore, we show that all weighted homology modules <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>H</mi><mrow><mi>i</mi><mo>,</mo><mi>R</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are trivial for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>></mo><mn>2</mn></mrow></semantics></math></inline-formula>. The invariant factors of our structure theorems, as well as the weighted Whitehead moves facilitating the removal of filled tetrahedra, are given a combinatorial interpretation. The weighted homology of bi-structures augments the simplicial counterpart by introducing novel torsion submodules and preserving the free submodules that appear in the simplicial homology.https://www.mdpi.com/2227-7390/9/7/744weighted simplicial complexweighted homologymodules over PIDs (Principal Ideal Domain)torsionembeddingspanning sub-trees
spellingShingle Andrei Bura
Qijun He
Christian Reidys
Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
Mathematics
weighted simplicial complex
weighted homology
modules over PIDs (Principal Ideal Domain)
torsion
embedding
spanning sub-trees
title Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
title_full Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
title_fullStr Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
title_full_unstemmed Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
title_short Weighted Homology of Bi-Structures over Certain Discrete Valuation Rings
title_sort weighted homology of bi structures over certain discrete valuation rings
topic weighted simplicial complex
weighted homology
modules over PIDs (Principal Ideal Domain)
torsion
embedding
spanning sub-trees
url https://www.mdpi.com/2227-7390/9/7/744
work_keys_str_mv AT andreibura weightedhomologyofbistructuresovercertaindiscretevaluationrings
AT qijunhe weightedhomologyofbistructuresovercertaindiscretevaluationrings
AT christianreidys weightedhomologyofbistructuresovercertaindiscretevaluationrings